【第1周】如何练就数据分析的思维?
一、结构化思维
根据《金字塔原理》,“任何事情都可以归纳出中心论点,由中心论点出发,可由三至七个论据支撑,每个一级论点可以衍生出其他的分论点。”如此发散开来,就可以形成以下的金字塔结构思考方式。
金字塔原理中的MECE法则:
A. 尽可能列出所有思考的要点
B. 找出关系,进行分类。
原则:论点之间相互独立,不重叠;论据穷尽划分,不遗漏。
用这种方式思考,能确保思考的点成体系,逻辑严谨,要素相互之间不凌乱不打架,思考的点都穷尽。长期练习这种方法,不仅更容易找到逻辑结构,也更容易培养你的结构化思维。
阅读书籍:《金字塔思维》
二、假说演绎思维
以情况为起点的推理方法是归纳推理,以规则为起点的推理方法可以称之为演绎推理。
—— 找问题原因用归纳,做预期评估用演绎
比如:某自营电商网站,现在想将商品提价,让你分析下销售额会有怎样的变化?
首先可以确定销量会下降,那么下降多少?这里就要假设商品流量情况,提价后转化率的变化情况,然后根据历史数据汇总出销量下降的情况,从而得出销售额的变化情况。
三、指标化思维
归纳和演绎的分析思维,帮助我们去定性问题,接下来我们要介入数据的方式,去定量分析。首要掌握指标化的思维。
指标体系
有指标是否就够了呢?指标按照结构化思维可以形成一个体系,如销售分析指标体系,生产指标体系,电商行业指标体系。
一家企业建立的数据分析体系通常细分到了具体可执行的部分,可以根据设定的某个指标异常变化,相应立即执行相应的方案,来保证运营的正常进行。
建立指标体系的思路:
向上
可以按业务职能结构划分,映射出更多维度,比如渠道,运营,产品等相关模块,将相关指标映射到主要模块,通过简单快速的沟通,快速定位问题原因。
向下
可以按因果结构划分,也就是指标分解,利用公式的方法。比如营收=日活*付费率*arpu等指标因果关系进行划分,通过定位指标波动,定位最细指标,辅助维度下转,能够清楚的问题原因。
就像枝丫一样,从主干不断延伸,将业务用指标评价量化,逐渐形成一个健全的数据分析体系。
四、维度分析思维
站在分析的角度讲一下维度思维。
当你有了指标,可以着手进行分析,数据分析大体可以分三类,第一类是利用维度分析数据,第二类是使用统计学知识如数据分布假设检验,最后一类是使用机器学习。这里我们主要了解维度分析法。
维度是观察数据的角度,例如“时间”、“地区”、“产品”。在具体分析中,我们可以把它认为是分析事物的角度。时间是一种角度、地区是一种角度,产品也是一种角度,所以它们都能算维度。
当我们有了维度后,就能够通过不同的维度组合,形成数据模型。数据模型不是一个高深的概念,它就是一个多维立方体。
这个概念最早来源于商业智能OLAP技术。数据按照事实表(Fact Table)和维表(Dimension Table)的形式存在。事实表用来记录具体事件,比如销量、销售额、售价、折扣等具体的数值信息。维度表是对事实表中事件的要素的描述信息,比如时间、城市、品牌、机型等。
下图举例一个简化的分析模型,分别由产品、城市、时间这三个维度组成,实际数据分析中,维度远不止三个。
在数库中,可能是这样两张表:
我们可以将品牌作为维度,分析手机的销量情况,也可以将时间作为维度,分析每一年手机市场的份额情况。
多维分析操作包括:钻取(Drill-down)、上卷(Roll-up)、切片(Slice)、切块(Dice)以及旋转(Pivot)。
钻取(Drill-down):在维的不同层次间的变化,从上层降到下一层,或者说是将汇总数据拆分到更细节的数据,比如通过对2018年华为的总销售数据进行钻取来查看各个手机型号的销售数据。
上卷(Roll-up):钻取的逆操作,即从细粒度数据向高层的聚合。如将江苏省、上海市和浙江省的销售数据进行汇总来查看江浙沪地区的销售数据。
切片(Slice):选择维中特定的值进行分析,比如只选择苹果手机的销售数据,或2017年的手机销售数据。
切块(Dice):选择维中特定区间的数据进行分析,比如选择2016年2017年的销售数据。
旋转(Pivot):即维的位置的互换,就像是二维表的行列转换,如通过旋转实现产品维和地域维的互换。
为什么这边花那么多笔墨去讲维度和度量呢,一者是我们在梳理分析思路时,常常会按照几个大的维度类去划分层级,多面分析,如时间维、地域维、产品维,帮助我们成为“多面分析手”。另一方面,BI商业智能在操作也基于维度一说,熟悉维度和数据模型的原理,能更好的理解这个工具。