Python数据分析

[速查表]-Python数据科学速查表-Bokeh

2021-08-04  本文已影响0人  六千宛

Bokeh 是 Python 的交互式可视图库,用于生成在浏览器里显示的大规模数据集高性能可视图。
Bokeh 的中间层通用 bokeh.plotting 界面主要为两个组件:数据与图示符。


image.png

使用 bokeh.plotting 界面绘图的基本步骤为:

    1. 准备数据
      Python列表、Numpy数组、Pandas数据框或其它序列值
    1. 创建图形
    1. 为数据添加渲染器,自定义可视化图
    1. 指定生成的输出类型
    1. 显示视图或保存结果
from bokeh.plotting import figure
from bokeh.io import output_file, show
x = [1,2,3,4,5]
y = [6,7,2,4,5]
p = figure(title='simple line example',
          x_axis_label='x',
          y_axis_label='y')
p.line(x,y,legend='Temp.',line_width=2)
output_file('lines.html')
show(p)

image.png


1.数据

通常,Bokeh在后台把数据转换为列数据源,不过也可手动转换:

import numpy as np
import pandas as pd
from bokeh.models import ColumnDataSource
df = pd.DataFrame(np.array([[33.9,4,65,'USA'],
                           [32.4,4,66,'Asia'],
                           [21.4,4,109,'Europe']]),columns=['mpq','cyl','hp','origin'],index=['Toyota','Fiat','Volvo'])
cds_df = ColumnDataSource(df)

绘图

from bokeh.plotting import figure
p1 = figure(plot_width=300,tools='pan,box_zoom')
p2 = figure(plot_width=300,plot_height=300,x_range=(0,8),y_range=(0,8))
p3 = figure()

3.渲染器与自定义可视化

#散点标记
p1.circle(np.array([1,2,3]),np.array([3,2,1]),fill_color='white')
p2.square(np.array([1.5,3.5,5.5]),[1,4,3])
image.png
image.png

···

线型图示符

p1.line([1,2,3,4],[3,4,5,6],line_width=5)
p4.multi_line(pd.DataFrame([[1,2,3],[5,6,7]]),pd.DataFrame([[3,4,5],[3,2,1]]),color="blue")
···


image.png
image.png
#自定义图示符
##图示符选择与反选
p = figure(tools='box_select')
p.circle('mpq'.'cyl',source=cds_df,
        selection_color='red',
        nonselection_alpha=0.1)
##绘图区内部
from bokeh.models import HoverTool
hover = HoverTool(tooltips=None,mode='vline')
p3.add_tools(hover)
##色彩表
from bokeh.models import CategoricalColorMapper
color_mapper = CategoricalColorMapper(
factors=['US', 'Asia', 'Europe'],
palette=['blue', 'red', 'green'])
p3.circle('mpg', 'cyl', source=cds_df,
color=dict(field='origin',
transform=color_mapper),
legend='Origin')
image.png
#图例位置
##绘图区内部
p.legend.location = 'bottom_left'
#绘图区外部
from bokeh.models import Legend
r1 = p2.asterisk(np.array([1,2,3]), np.array([3,2,1])
r2 = p2.line([1,2,3,4], [3,4,5,6])
legend = Legend(items=[("One" ,[p1, r1]),("Two",[r2])],
 location=(0, -30))
p.add_layout(legend, 'right')
#图例方向
 p.legend.orientation = "horizontal"
p.legend.orientation = "vertical"
#图例背景与边框
p.legend.border_line_color = "navy"
p.legend.background_fill_color = "white"
#行列布局
##行
from bokeh.layouts import row
layout = row(p1,p2,p3)
##列
from bokeh.layouts import columns
layout = column(p1,p2,p3)
#行列嵌套
layout = row(column(p1,p2), p3)
#栅格布局
from bokeh.layouts import gridplot
row1 = [p1,p2]
row2 = [p3]
layout = gridplot([[p1,p2],[p3]])
#标签布局
from bokeh.models.widgets import Panel, Tabs
tab1 = Panel(child=p1, title="tab1")
tab2 = Panel(child=p2, title="tab2")
layout = Tabs(tabs=[tab1, tab2])
#链接图
##链接坐标轴
p2.x_range = p1.x_range
p2.y_range = p1.y_range
##链接刷
p4 = figure(plot_width = 100,
tools='box_select,lasso_select')
p4.circle('mpg', 'cyl', source=cds_df)
p5 = figure(plot_width = 200,
 tools='box_select,lasso_select')
p5.circle('mpg', 'hp', source=cds_df)
layout = row(p4,p5)

4.输出和导出

#Notebook
from bokeh.io import output_notebook, show
output_notebook()
#HTML
##脱机HTML
from bokeh.embed import file_html
from bokeh.resources import CDN
html = file_html(p, CDN, "my_plot")
from bokeh.io import output_file, show
output_file('my_bar_chart.html', mode='cdn')
##组件
from bokeh.embed import components
script, div = components(p)
#PNG
from bokeh.io import export_png
export_png(p, filename="plot.png")
#SVG
from bokeh.io import export_svgs
p.output_backend = "svg"
export_svgs(p, filename="plot.svg")

5.显示或保存图形

show(p1)
save(p1) 
show(layout)
save(layout)
上一篇下一篇

猜你喜欢

热点阅读