Rank

2021-11-13  本文已影响0人  Phoebe_Liu
  1. 快速排序
    不稳定算法。时间复杂度在最坏情况下是O(N2),平均的时间复杂度是O(N*lgN)。
public class QuickSort {

    /*
     * 快速排序
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     l -- 数组的左边界(例如,从起始位置开始排序,则l=0)
     *     r -- 数组的右边界(例如,排序截至到数组末尾,则r=a.length-1)
     */
    public static void quickSort(int[] a, int l, int r) {

        if (l < r) {
            int i,j,x;

            i = l;
            j = r;
            x = a[i];
            while (i < j) {
                while(i < j && a[j] > x)
                    j--; // 从右向左找第一个小于x的数
                if(i < j)
                    a[i++] = a[j];
                while(i < j && a[i] < x)
                    i++; // 从左向右找第一个大于x的数
                if(i < j)
                    a[j--] = a[i];
            }
            a[i] = x;
            quickSort(a, l, i-1); /* 递归调用 */
            quickSort(a, i+1, r); /* 递归调用 */
        }
    }

    public static void main(String[] args) {
        int i;
        int a[] = {30,40,60,10,20,50};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        quickSort(a, 0, a.length-1);

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
  1. 归并排序
    归并排序的时间复杂度是O(N*lgN),稳定的排序算法

public class MergeSort {

    /*
     * 将一个数组中的两个相邻有序区间合并成一个
     *
     * 参数说明: 
     *     a -- 包含两个有序区间的数组
     *     start -- 第1个有序区间的起始地址。
     *     mid   -- 第1个有序区间的结束地址。也是第2个有序区间的起始地址。
     *     end   -- 第2个有序区间的结束地址。
     */
    public static void merge(int[] a, int start, int mid, int end) {
        int[] tmp = new int[end-start+1];    // tmp是汇总2个有序区的临时区域
        int i = start;            // 第1个有序区的索引
        int j = mid + 1;        // 第2个有序区的索引
        int k = 0;                // 临时区域的索引

        while(i <= mid && j <= end) {
            if (a[i] <= a[j])
                tmp[k++] = a[i++];
            else
                tmp[k++] = a[j++];
        }

        while(i <= mid)
            tmp[k++] = a[i++];

        while(j <= end)
            tmp[k++] = a[j++];

        // 将排序后的元素,全部都整合到数组a中。
        for (i = 0; i < k; i++)
            a[start + i] = tmp[i];

        tmp=null;
    }

    /*
     * 归并排序(从上往下)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 数组的起始地址
     *     endi -- 数组的结束地址
     */
    public static void mergeSortUp2Down(int[] a, int start, int end) {
        if(a==null || start >= end)
            return ;

        int mid = (end + start)/2;
        mergeSortUp2Down(a, start, mid); // 递归排序a[start...mid]
        mergeSortUp2Down(a, mid+1, end); // 递归排序a[mid+1...end]

        // a[start...mid] 和 a[mid...end]是两个有序空间,
        // 将它们排序成一个有序空间a[start...end]
        merge(a, start, mid, end);
    }



    public static void main(String[] args) {
        int i;
        int a[] = {80,30,60,40,20,10,50,70};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        mergeSortUp2Down(a, 0, a.length-1);        // 归并排序(从上往下)
        //mergeSortDown2Up(a);                    // 归并排序(从下往上)

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
  1. 堆排序
    不稳定的算法。时间复杂度是O(N*lgN)
public class HeapSort {

    /* 
     * (最大)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void maxHeapDown(int[] a, int start, int end) {
        int c = start;            // 当前(current)节点的位置
        int l = 2*c + 1;        // 左(left)孩子的位置
        int tmp = a[c];            // 当前(current)节点的大小

        for (; l <= end; c=l,l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if ( l < end && a[l] < a[l+1])
                l++;        // 左右两孩子中选择较大者,即m_heap[l+1]
            if (tmp >= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }

    /*
     * 堆排序(从小到大)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortAsc(int[] a, int n) {
        int i,tmp;

        // 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
        for (i = n / 2 - 1; i >= 0; i--)
            maxHeapDown(a, i, n-1);

        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
            // 即,保证a[i-1]是a[0...i-1]中的最大值。
            maxHeapDown(a, 0, i-1);
        }
    }

    /* 
     * (最小)堆的向下调整算法
     *
     * 注: 数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
     *     其中,N为数组下标索引值,如数组中第1个数对应的N为0。
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
     *     end   -- 截至范围(一般为数组中最后一个元素的索引)
     */
    public static void minHeapDown(int[] a, int start, int end) {
        int c = start;            // 当前(current)节点的位置
        int l = 2*c + 1;        // 左(left)孩子的位置
        int tmp = a[c];            // 当前(current)节点的大小

        for (; l <= end; c=l,l=2*l+1) {
            // "l"是左孩子,"l+1"是右孩子
            if ( l < end && a[l] > a[l+1])
                l++;        // 左右两孩子中选择较小者
            if (tmp <= a[l])
                break;        // 调整结束
            else {            // 交换值
                a[c] = a[l];
                a[l]= tmp;
            }
        }
    }

    /*
     * 堆排序(从大到小)
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void heapSortDesc(int[] a, int n) {
        int i,tmp;

        // 从(n/2-1) --> 0逐次遍历每。遍历之后,得到的数组实际上是一个最小堆。
        for (i = n / 2 - 1; i >= 0; i--)
            minHeapDown(a, i, n-1);

        // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
        for (i = n - 1; i > 0; i--) {
            // 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最小的。
            tmp = a[0];
            a[0] = a[i];
            a[i] = tmp;
            // 调整a[0...i-1],使得a[0...i-1]仍然是一个最小堆。
            // 即,保证a[i-1]是a[0...i-1]中的最小值。
            minHeapDown(a, 0, i-1);
        }
    }

    public static void main(String[] args) {
        int i;
        int a[] = {20,30,90,40,70,110,60,10,100,50,80};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        heapSortAsc(a, a.length);            // 升序排列
        //heapSortDesc(a, a.length);        // 降序排列

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
  1. 桶排序
    n 为待排序的元素的个数,m 为桶的个数(=待排序元素的最大值)
    时间复杂度就是 O(n+m),空间复杂度是O(m)
    适用于:在数据分布相对比较均匀或者数据跨度范围并不是很大时,排序的速度还是相当快且简单的。(反例:比如我们对 1、10、100、1000 这四个元素排序,那么我们需要长度为 1001 的数组用来排序,不适合用桶排序)

public class BucketSort {

    /*
     * 桶排序
     *
     * 参数说明: 
     *     a -- 待排序数组
     *     max -- 数组a中最大值的范围
     */
    public static void bucketSort(int[] a, int max) {
        int[] buckets;

        if (a==null || max<1)
            return ;

        // 创建一个容量为max的数组buckets,并且将buckets中的所有数据都初始化为0。
        buckets = new int[max];

        // 1. 计数
        for(int i = 0; i < a.length; i++) 
            buckets[a[i]]++; 

        // 2. 排序
        for (int i = 0, j = 0; i < max; i++) {
            while( (buckets[i]--) >0 ) {
                a[j++] = i;
            }
        }

        buckets = null;
    }

    public static void main(String[] args) {
        int i;
        int a[] = {8,2,3,4,3,6,6,3,9};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        bucketSort(a, 10); // 桶排序

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
  1. 选择排序
public class SelectSort {

    /*
     * 选择排序
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void selectSort(int[] a, int n) {
        int i;        // 有序区的末尾位置
        int j;        // 无序区的起始位置
        int min;    // 无序区中最小元素位置

        for(i=0; i<n; i++) {
            min=i;

            // 找出"a[i+1] ... a[n]"之间的最小元素,并赋值给min。
            for(j=i+1; j<n; j++) {
                if(a[j] < a[min])
                    min=j;
            }

            // 若min!=i,则交换 a[i] 和 a[min]。
            // 交换之后,保证了a[0] ... a[i] 之间的元素是有序的。
            if(min != i) {
                int tmp = a[i];
                a[i] = a[min];
                a[min] = tmp;
            }
        }
    }

    public static void main(String[] args) {
        int i;
        int[] a = {20,40,30,10,60,50};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        selectSort(a, a.length);

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
  1. 插入排序

public class InsertSort {

    /*
     * 直接插入排序
     *
     * 参数说明: 
     *     a -- 待排序的数组
     *     n -- 数组的长度
     */
    public static void insertSort(int[] a, int n) {
        int i, j, k;

        for (i = 1; i < n; i++) {

            //为a[i]在前面的a[0...i-1]有序区间中找一个合适的位置
            for (j = i - 1; j >= 0; j--)
                if (a[j] < a[i])
                    break;

            //如找到了一个合适的位置
            if (j != i - 1) {
                //将比a[i]大的数据向后移
                int temp = a[i];
                for (k = i - 1; k > j; k--)
                    a[k + 1] = a[k];
                //将a[i]放到正确位置上
                a[k + 1] = temp;
            }
        }
    }

    public static void main(String[] args) {
        int i;
        int[] a = {20,40,30,10,60,50};

        System.out.printf("before sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");

        insertSort(a, a.length);

        System.out.printf("after  sort:");
        for (i=0; i<a.length; i++)
            System.out.printf("%d ", a[i]);
        System.out.printf("\n");
    }
}
上一篇下一篇

猜你喜欢

热点阅读