LeetCode 990. 等式方程的可满足性 | Python

2020-06-08  本文已影响0人  大梦三千秋

990. 等式方程的可满足性


题目来源:力扣(LeetCode)https://leetcode-cn.com/problems/satisfiability-of-equality-equations

题目


给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。

示例 1:

输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。

示例 2:

输出:["b==a","a==b"]
输入:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。

示例 3:

输入:["a==b","b==c","a==c"]
输出:true

示例 4:

输入:["a==b","b!=c","c==a"]
输出:false

示例 5:

输入:["c==c","b==d","x!=z"]
输出:true

提示:

解题思路


思路:并查集

先看例 3 和 例 4。这两个例题中,所给不同部分就是数组中第二个方程式。看看例 4 中,为何返回的结果是 False?

["a==b","b!=c","c==a"]

在例 4 当中,第二个式子 b!=c,而前面的式子中 a==c 那么这里将 a 替换 b,第二个式子就变为 a!=c,但是最后的式子中 a==c 又成立,这里就明显存在冲突,所以这里结果返回 False。

在上面的例子当中,我们也可以看到,相等关系具有传递性,所有的相等变量其实是属于同一个集合。但是这里并不关心传递的距离,只关心是否连通。那么这里就考虑使用并查集来解决本问题。

这里,关于并查集设计算法具体如下:

在这里,我们可以将数组中方程式的变量当成节点,相等关系则表示两个节点的边。前面说明,相等变量属于同个连通分量,那么使用并查集来维护这个关系

具体的实现:

具体的代码实现如下。

代码实现


from typing import List
class Solution:

    # 并查集类
    class UnionFind(object):
        def __init__(self):
            '''初始化数组
            '''
            self.parent = list(range(26))
        
        def find(self, index):
            '''查询操作
            查询直至根节点
            这里使用了路径压缩
            '''
            # 如果父节点是自身,那么就是根节点,返回
            while index!=self.parent[index]:
                self.parent[index] = self.parent[self.parent[index]]
                index = self.parent[index]
            return index
        
        def union(self, index1, index2):
            '''合并操作
            将其中一个变量的根节点指向另外一个变量的根节点
            '''
            root_index1 = self.find(index1)
            root_index2 = self.find(index2)
            self.parent[root_index1] = root_index2

        def is_connected(self, index1, index2):
            '''判断是否连通
            '''
            return self.find(index1) == self.find(index2)

    def equationsPossible(self, equations: List[str]) -> bool:
        uf = Solution.UnionFind()

        # 第一次遍历所有等式,进行合并
        for equation in equations:
            if equation[1] == "=":
                # 这里将变量字符转换为整数
                # ord('a') 返回对应的十进制整数
                index1 = ord(equation[0]) - ord('a')
                index2 = ord(equation[3]) - ord('a')
                uf.union(index1, index2)
        # 再次遍历所有不等式,查找对应的连通分量
        for equation in equations:
            if equation[1] == '!':
                index1 = ord(equation[0]) - ord('a')
                index2 = ord(equation[3]) - ord('a')
                # 如果两个变量属于同个连通分量,那就出现矛盾,返回 False
                if uf.is_connected(index1, index2):
                    return False
        # 最终没有矛盾,返回 True
        return True


# equations = ["b==a","a==b"]
equations = ["a==b","b!=a"]

solution = Solution()
solution.equationsPossible(equations)

实现结果


实现结果

总结



以上就是关于解决《990. 等式方程的可满足性》问题的主要内容。如果觉得写得还不错,欢迎关注。微信公众号《书所集录》同步更新,同样欢迎关注。

上一篇下一篇

猜你喜欢

热点阅读