10X genomics

R package:WGCNA加权基因共表达网络的构建与分析

2019-05-30  本文已影响0人  佳名

1.安装

BiocManager::install("WGCNA")
library(WGCNA)

载入WGCNA包时会发现部分包没有安装需要手动安装

BiocManager::install(c("AnnotationDbi", "impute","GO.db", "preprocessCore"))

打开多线程

allowWGCNAThreads()#允许R语言程序最大线程运行
enableWGCNAThreads()# 打开多线程

2.导入数据

myfiles <- list.files(pattern = "*FPKM.csv")
myfiles
resdata<-read.table(myfiles[1],sep=',',header=T,row.names=1)

2.1 矩阵转置

Expr <-as.data.frame(t(resdata[,7:ncol(resdata)]))#
names(Expr) = resdata[,1]

2.2 查看

dim(Expr)
Expr[1:10,1:8]#查看前十行的前八列

3 检查离群样本

sampleTree = hclust(dist(Expr), method = "average")
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="") 
Fig1.png

4 选择合适的软阈值

powers = c(c(1:10), seq(from = 12, to=30, by=2))
sft = pickSoftThreshold(Expr, powerVector = powers,networkType = "signed hybrid", verbose = 5)
#pickSoftThreshold: will use block size 2776.
# pickSoftThreshold: calculating connectivity for given powers...
   #..working on genes 1 through 2776 of 16116
   #..working on genes 2777 through 5552 of 16116
   #..working on genes 5553 through 8328 of 16116
   #..working on genes 8329 through 11104 of 16116
   #..working on genes 11105 through 13880 of 16116
   #..working on genes 13881 through 16116 of 16116
  # Power SFT.R.sq  slope truncated.R.sq  mean.k. median.k. max.k.
#1      1   0.0314  0.422          0.833 1710.000  1.71e+03 2890.0
#2      2   0.2030 -0.675          0.759  597.000  5.70e+02 1380.0
#3      3   0.5500 -1.060          0.870  266.000  2.31e+02  814.0
#4      4   0.7340 -1.310          0.943  138.000  1.06e+02  557.0
#5      5   0.7990 -1.520          0.964   79.200  5.26e+01  422.0
#6      6   0.8590 -1.610          0.982   49.100  2.76e+01  334.0
#7      7   0.9050 -1.630          0.991   32.300  1.53e+01  274.0
#8      8   0.9310 -1.630          0.989   22.300  8.83e+00  230.0
#9      9   0.9480 -1.630          0.988   16.000  5.22e+00  200.0
#10    10   0.9560 -1.620          0.984   11.800  3.18e+00  176.0
#11    12   0.9780 -1.570          0.986    6.980  1.25e+00  141.0
#12    14   0.9850 -1.520          0.986    4.480  5.31e-01  118.0
#13    16   0.9880 -1.470          0.988    3.060  2.37e-01  100.0
#14    18   0.9900 -1.420          0.989    2.200  1.10e-01   87.3
#15    20   0.9930 -1.380          0.991    1.640  5.32e-02   77.1
#16    22   0.9960 -1.340          0.995    1.270  2.64e-02   68.8
#17    24   0.9940 -1.310          0.992    1.010  1.35e-02   62.1
#18    26   0.9940 -1.280          0.993    0.819  7.03e-03   56.7
#19    28   0.9900 -1.260          0.988    0.678  3.73e-03   52.3
#20    30   0.9950 -1.240          0.994    0.569  2.00e-03   48.5

SFT.R.sq为R2

也可以函数估计软阈值

power = sft$powerEstimate
power
#[1] 6

4.1 绘制选择软阈值的参考图

par(mfrow = c(1,2))
cex1 = 0.9
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab="Soft Threshold (power)",
     ylab="Scale Free Topology Model Fit,signed R^2",type="n",
     main = paste("Scale independence"))
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     labels=powers,cex=cex1,col="red")
abline(h=0.85,col="red")
plot(sft$fitIndices[,1], sft$fitIndices[,5],
     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
     main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, 
     cex=cex1, col="red")
Fig2.png

5. 加权基因共表达网络的构建

net = blockwiseModules(Expr, power = power, maxBlockSize = 5000,
                       TOMType = "signed", minModuleSize = 30,
                       reassignThreshold = 0, mergeCutHeight = 0.1,
                       numericLabels = TRUE, pamRespectsDendro = FALSE,
                       saveTOMs=TRUE, corType = "pearson", 
                       loadTOMs=TRUE,saveTOMFileBase = "data.tom",
                       verbose = 3)

6. 模块划分结果的可视化

#查看总共有多少模块
table(net$colors)
moduleLabels = net$colors
moduleColors = labels2colors(moduleLabels)
plotDendroAndColors(net$dendrograms[[1]], moduleColors[net$blockGenes[[1]]],
                    paste(time,id,sep="\n"),
                    dendroLabels = FALSE, hang = 0.03,
                    addGuide = TRUE, guideHang = 0.05)
Fig3.png

7. 导出网络用于cytoscape 可视化及特征分析

TOM = TOMsimilarityFromExpr(Expr, power = power)
cyt = exportNetworkToCytoscape(TOM,
             edgeFile = paste("edges.txt", sep=""),
             nodeFile = paste("nodes.txt", sep=""),
             weighted = TRUE, threshold = 0.5,
             nodeNames = probes, nodeAttr = moduleColors)

8. 绘制模块之间相关性图

library(stringr)
MEs = net$MEs
colnames(MEs_col) = paste0("ME", labels2colors(
  as.numeric(str_replace_all(colnames(MEs),"ME",""))))
MEs_col = orderMEs(MEs_col)
# 根据基因间表达量进行聚类所得到的各模块间的相关性图
# marDendro/marHeatmap 设置下、左、上、右的边距
plotEigengeneNetworks(MEs_col, "Eigengene adjacency heatmap", 
                      marDendro = c(3,3,2,4),
                      marHeatmap = c(3,4,2,2), plotDendrograms = T, 
                      xLabelsAngle = 90)
Fig4.png

9.模块与表型相关性

library(stringr)
nSamples = nrow(Expr)
subtype<-c(rep('A',12),rep('B',14),rep('C',15),rep('D',16))
row.names(Expr)
datTraits = data.frame(gsm=row.names(Expr),
                       subtype)
rownames(datTraits)=datTraits[,1]
head(datTraits)
#确定临床表型与样本名字
sampleNames = rownames(Expr);
traitRows = match(sampleNames, datTraits$gsm)  
rownames(datTraits) = datTraits[traitRows, 1]
design=model.matrix(~0+ datTraits$subtype)
colnames(design)=levels(datTraits$subtype)
##另一种方法
moduleLabelsAutomatic = net$colors
moduleColorsAutomatic = labels2colors(moduleLabelsAutomatic)
moduleColorsWW = moduleColorsAutomatic
MEs0 = moduleEigengenes(Expr, moduleColorsWW)$eigengenes
MEsWW = orderMEs(MEs0)
modTraitCor = cor(MEsWW, design, use = "p")
colnames(MEsWW)
modlues=MEsWW

modTraitP = corPvalueStudent(modTraitCor, nSamples)
textMatrix = paste(signif(modTraitCor, 2), "\n(", signif(modTraitP, 1), ")", sep = "")
dim(textMatrix) = dim(modTraitCor)
labeledHeatmap(Matrix = modTraitCor, 
               xLabels = colnames(design), 
               yLabels = names(MEsWW), 
               cex.lab = 0.5,  
               yColorWidth=0.01, 
               xColorWidth = 0.01,
               ySymbols = colnames(modlues), 
               colorLabels = FALSE, colors = blueWhiteRed(50), 
               textMatrix = textMatrix, setStdMargins = FALSE, 
               cex.text = 0.3, zlim = c(-1,1), 
               main = paste("Module-trait relationships")
library(stringr)
MEs = net$MEs
colnames(MEs) = paste0("ME", labels2colors(as.numeric(str_replace_all(colnames(MEs),"ME",""))))
MEs = orderMEs(MEs)
nSamples = nrow(Exprdata)
NW<-c(rep(1,14),rep(0,43))
OB<-c(rep(0,14),rep(1,12),rep(0,31))
NAFL<-c(rep(0,26),rep(1,15),rep(0,16))
NASH<-c(rep(0,41),rep(1,16))
traitData<-data.frame(NW,OB,NAFL,NASH)
#nrow(Exprdata)
row.names(traitData)<-rownames(Exprdata)
head(traitData)
#traitData <- read.table("trait.txt", sep='\t', header=T, row.names=1,check.names=FALSE, comment='',quote="",skipNul=TRUE)
sampleName = rownames(Exprdata)
label = colnames(traitData)
traits = traitData[match(sampleName, rownames(traitData)), ]
modTraitCor = cor(MEs, traits, use = "p")
modTraitP = corPvalueStudent(modTraitCor, nSamples)
textMatrix = paste(signif(modTraitCor, 3), "\n(", signif(modTraitP, 1), ")", sep = "")
#dim(textMatrix) = dim(modTraitCor)
#par(mar = c(6, 8.5, 3, 3))
sizeGrWindow(18,6)
par(mar = c(2, 6, 2, 1))
labeledHeatmap(Matrix = modTraitCor,
               xLabels = label,
               yLabels = names(MEs),
               cex.lab = 0.5,
               ySymbols = colnames(MEs),
               colorLabels = FALSE,
               colors = blueWhiteRed(50),
               textMatrix = textMatrix,
               setStdMargins = FALSE,
               cex.text = 0.28,
               zlim = c(-1,1),
               main = paste("Module-trait relationships"))

cex.lab可以更改X轴Y轴label字体的大小,cex.text可以更改热图中字体的大小,colors可以改变颜色。

10.提取指定模块的基因名

# Recalculate topological overlap
TOM = TOMsimilarityFromExpr(Expr, power = 6); 
# Select module
module = "brown";
module = "blue";
module = "yellow";
probes = colnames(Expr) ## 我们例子里面的probe就是基因名
inModule = (moduleColors==module);
modProbes = probes[inModule];
modTOM = TOM[inModule, inModule]
dimnames(modTOM) = list(modProbes, modProbes)
cyt = exportNetworkToCytoscape(
  modTOM,
  edgeFile = paste("CytoscapeInput-edges-", paste(module, collapse="-"), ".txt", sep=""),
  nodeFile = paste("CytoscapeInput-nodes-", paste(module, collapse="-"), ".txt", sep=""),
  weighted = TRUE,
  threshold = 0.02,
  nodeNames = modProbes, 
  nodeAttr = moduleColors[inModule]
)

11 计算模块与基因的相关性矩阵

modNames = substring(names(MEs), 3)
geneModuleMembership = as.data.frame(cor(datExpr, MEs, use = "p"));
## 算出每个模块跟基因的皮尔森相关系数矩阵
## MEs是每个模块在每个样本里面的值
## datExpr是每个基因在每个样本的表达量
MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples));
names(geneModuleMembership) = paste("MM", modNames, sep="");
names(MMPvalue) = paste("p.MM", modNames, sep="");
上一篇下一篇

猜你喜欢

热点阅读