IT@程序员猿媛

netty源码分析(10)-NioEventLoop执行之pro

2019-02-21  本文已影响46人  Jorgezhong

前节我们分析了runAllTask()sselect(),前者是执行NioEventLoop持有得任务队列中所有得任务,后者是轮询检测IO事件得发生。
本节研究processSelectedKeys():处理IO事件

我们直到处理IO事件需要轮询selectedKeys,被NioEventLoop持有,查看原代码,其底层维持了一个数组,而不是HashSet。这里netty对Selector做了事件复杂度的优化

private SelectedSelectionKeySet selectedKeys;

final class SelectedSelectionKeySet extends AbstractSet<SelectionKey> {
    /**
     * 维持了一个数组,而不是HashSet
     */
    SelectionKey[] keys;
    int size;

    SelectedSelectionKeySet() {
        keys = new SelectionKey[1024];
    }

    /**
     * 改方法直接操作数组,实现时间复杂度为O(1)
     * @param o
     * @return
     */
    @Override
    public boolean add(SelectionKey o) {
        if (o == null) {
            return false;
        }

        keys[size++] = o;
        if (size == keys.length) {
            increaseCapacity();
        }

        return true;
    }

    @Override
    public boolean remove(Object o) {
        return false;
    }

    @Override
    public boolean contains(Object o) {
        return false;
    }

    @Override
    public int size() {
        return size;
    }

    @Override
    public Iterator<SelectionKey> iterator() {
        return new Iterator<SelectionKey>() {
            private int idx;

            @Override
            public boolean hasNext() {
                return idx < size;
            }

            @Override
            public SelectionKey next() {
                if (!hasNext()) {
                    throw new NoSuchElementException();
                }
                return keys[idx++];
            }

            @Override
            public void remove() {
                throw new UnsupportedOperationException();
            }
        };
    }

    void reset() {
        reset(0);
    }

    void reset(int start) {
        Arrays.fill(keys, start, size, null);
        size = 0;
    }

    private void increaseCapacity() {
        SelectionKey[] newKeys = new SelectionKey[keys.length << 1];
        System.arraycopy(keys, 0, newKeys, 0, size);
        keys = newKeys;
    }
}

NioEventLoop实例化的时候,调用openSelector(),获取了一个Selector

    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler) {
        super(parent, executor, false, DEFAULT_MAX_PENDING_TASKS, rejectedExecutionHandler);
        if (selectorProvider == null) {
            throw new NullPointerException("selectorProvider");
        }
        if (strategy == null) {
            throw new NullPointerException("selectStrategy");
        }
        provider = selectorProvider;
        //调用jdk底层代码,获取一个IO事件轮询器,并且优化Selector
        final SelectorTuple selectorTuple = openSelector();
        selector = selectorTuple.selector;
        unwrappedSelector = selectorTuple.unwrappedSelector;
        selectStrategy = strategy;
    }

在这里进行了优化,需要了解的是 SelectorTuple 只是包装了unwrappedSelector,最终获取的是WindowsSelectorImpl,其继承了jdk底层的SelectorImpl
那么优化的过程也不复杂。

  1. 通过反射把netty自己实现的这个WindowsSelectorImpl其中两个重要的属性selectedKeyspublicSelectedKeys的实现替换成了SelectedSelectionKeySet,重写了其一系列方法。实际上是将这两个原本是用HashSet来实现的属性,换成了实际上是一个数组的实现的SelectionKey[] keys;,并且这两个属性用的都是同一个对象。
  2. 将这个标记事件的对象,直接存储再NioEventLoop#selectedKeys,后续可直接操作。

优化的结果是降低了时间复杂度,从O(n) 降低到O(1).

 /**
     * 用数组替换selectedKeys的HashSet的一个是实现,做到add方法时间复杂度为O(1)
     * @return
     */
    private SelectorTuple openSelector() {
        final Selector unwrappedSelector;
        try {
            ////初始化一个unwrappedSelector 是WindowsSelectorImpl继承了jdk的SelectorImpl
            unwrappedSelector = provider.openSelector();
        } catch (IOException e) {
            throw new ChannelException("failed to open a new selector", e);
        }

        //判断是否要优化
        if (DISABLE_KEY_SET_OPTIMIZATION) {
            //不需要优化
            return new SelectorTuple(unwrappedSelector);
        }

        //反射获取SelectorImpl
        Object maybeSelectorImplClass = AccessController.doPrivileged(new PrivilegedAction<Object>() {
            @Override
            public Object run() {
                try {
                    return Class.forName(
                            "sun.nio.ch.SelectorImpl",
                            false,
                            PlatformDependent.getSystemClassLoader());
                } catch (Throwable cause) {
                    return cause;
                }
            }
        });

        //判断是否是SelectorImpl的Class对象
        if (!(maybeSelectorImplClass instanceof Class) ||
            // ensure the current selector implementation is what we can instrument.
            !((Class<?>) maybeSelectorImplClass).isAssignableFrom(unwrappedSelector.getClass())) {
            if (maybeSelectorImplClass instanceof Throwable) {
                Throwable t = (Throwable) maybeSelectorImplClass;
                logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, t);
            }
            return new SelectorTuple(unwrappedSelector);
        }
        //是是SelectorImpl的Class对象
        final Class<?> selectorImplClass = (Class<?>) maybeSelectorImplClass;

        //实际上维持了一个SelectionKey[]数组
        final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();

        Object maybeException = AccessController.doPrivileged(new PrivilegedAction<Object>() {
            @Override
            public Object run() {
                try {
                    //获取两个重要的属性:selectedKeys和publicSelectedKeys,这两个属性都是HashSet
                    Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
                    Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");

                    if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) {
                        // Let us try to use sun.misc.Unsafe to replace the SelectionKeySet.
                        // This allows us to also do this in Java9+ without any extra flags.
                        long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField);
                        long publicSelectedKeysFieldOffset =
                                PlatformDependent.objectFieldOffset(publicSelectedKeysField);

                        if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) {
                            PlatformDependent.putObject(
                                    unwrappedSelector, selectedKeysFieldOffset, selectedKeySet);
                            PlatformDependent.putObject(
                                    unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet);
                            return null;
                        }
                        // We could not retrieve the offset, lets try reflection as last-resort.
                    }

                    Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true);
                    if (cause != null) {
                        return cause;
                    }
                    cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true);
                    if (cause != null) {
                        return cause;
                    }
                    //将netty的unwrappedSelector的selectedKeys和publicSelectedKeys设置成经过优化后的selectedKeySet
                    selectedKeysField.set(unwrappedSelector, selectedKeySet);
                    publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
                    return null;
                } catch (NoSuchFieldException e) {
                    return e;
                } catch (IllegalAccessException e) {
                    return e;
                }
            }
        });

回到具体调用processSelectedKeys();的地方,发现确实是轮询selectedKeys来进行处理

    private void processSelectedKeys() {
        if (selectedKeys != null) {
            processSelectedKeysOptimized();
        } else {
            processSelectedKeysPlain(selector.selectedKeys());
        }
    }

    private void processSelectedKeysOptimized() {
        //轮询selectedKeys,
        for (int i = 0; i < selectedKeys.size; ++i) {
            final SelectionKey k = selectedKeys.keys[i];
            // null out entry in the array to allow to have it GC'ed once the Channel close
            // See https://github.com/netty/netty/issues/2363
            selectedKeys.keys[i] = null;
            //获取channel
            final Object a = k.attachment();

            if (a instanceof AbstractNioChannel) {
                //处理
                processSelectedKey(k, (AbstractNioChannel) a);
            } else {
                @SuppressWarnings("unchecked")
                NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
                processSelectedKey(k, task);
            }

            if (needsToSelectAgain) {
                // null out entries in the array to allow to have it GC'ed once the Channel close
                // See https://github.com/netty/netty/issues/2363
                selectedKeys.reset(i + 1);

                selectAgain();
                i = -1;
            }
        }
    }


具体的处理逻辑呢也比较简单,就是判断以下连接是否合法,然后读取事件类型,并根据不同的事件类型具体处理不同的IO事件。

    private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        //判断连接是否合法
        if (!k.isValid()) {
            final EventLoop eventLoop;
            try {
                eventLoop = ch.eventLoop();
            } catch (Throwable ignored) {
                // If the channel implementation throws an exception because there is no event loop, we ignore this
                // because we are only trying to determine if ch is registered to this event loop and thus has authority
                // to close ch.
                return;
            }
            // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
            // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
            // still healthy and should not be closed.
            // See https://github.com/netty/netty/issues/5125
            if (eventLoop != this || eventLoop == null) {
                return;
            }
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
            return;
        }
        //合法的连接进入事件处理逻辑
        try {
            //获取key的IO事件并根据类型处理的
            int readyOps = k.readyOps();
            // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
            // the NIO JDK channel implementation may throw a NotYetConnectedException.
            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
                // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
                // See https://github.com/netty/netty/issues/924
                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            // Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
                ch.unsafe().forceFlush();
            }

            // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
            // to a spin loop
            //如果当前NioEventLoop是workGroup 则可能是OP_READ,bossGroup是OP_ACCEPT
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }
上一篇 下一篇

猜你喜欢

热点阅读