并发编程-锁与线程同步
多线程同步
为何要使用同步?
java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查),
将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用,
从而保证了该变量的唯一性和准确性。
同步方式
1.同步方法
即有synchronized关键字修饰的方法。
由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,
内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。
代码如:
public synchronized void save(){}
注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类
2.同步代码块
即有synchronized关键字修饰的语句块。
被该关键字修饰的语句块会自动被加上内置锁,从而实现同步
代码如:
synchronized(object){
}
注:同步是一种高开销的操作,因此应该尽量减少同步的内容。
通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。
3.使用特殊域变量(volatile)实现线程同步
a.volatile关键字为域变量的访问提供了一种免锁机制,
b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新,
c.因此每次使用该域就要重新计算,而不是使用寄存器中的值
d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量
例如:
在上面的例子当中,只需在account前面加上volatile修饰,即可实现线程同步。
class Bank {
//需要同步的变量加上volatile
private volatile int account = 100;
public int getAccount() {
return account;
}
//这里不再需要synchronized
public void save(int money) {
account += money;
}
}
注:多线程中的非同步问题主要出现在对域的读写上,如果让域自身避免这个问题,则就不需要修改操作该域的方法。
用final域,有锁保护的域和volatile域可以避免非同步的问题。
4.使用重入锁实现线程同步
在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。
ReentrantLock类是可重入、互斥、实现了Lock接口的锁,
它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力
ReenreantLock类的常用方法有:
* ReentrantLock() : 创建一个ReentrantLock实例
* lock() : 获得锁
* unlock() : 释放锁
注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用
class Bank {
private int account = 100;
//需要声明这个锁
private Lock lock = new ReentrantLock();
public int getAccount() {
return account;
}
//这里不再需要synchronized
public void save(int money) {
lock.lock();
try{
account += money;
}finally{
lock.unlock();
}
}
}
注:关于Lock对象和synchronized关键字的选择:
a.最好两个都不用,使用一种java.util.concurrent包提供的机制,
能够帮助用户处理所有与锁相关的代码。
b.如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码
c.如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁
5.使用局部变量实现线程同步
如果使用ThreadLocal管理变量,则每一个使用该变量的线程都获得该变量的副本,
副本之间相互独立,这样每一个线程都可以随意修改自己的变量副本,而不会对其他线程产生影响。
ThreadLocal 类的常用方法
ThreadLocal() : 创建一个线程本地变量
get() : 返回此线程局部变量的当前线程副本中的值
initialValue() : 返回此线程局部变量的当前线程的"初始值"
set(T value) : 将此线程局部变量的当前线程副本中的值设置为value
public class Bank{
//使用ThreadLocal类管理共享变量account
private static ThreadLocal<Integer> account = new ThreadLocal<Integer>(){
@Override
protected Integer initialValue(){
return 100;
}
};
public void save(int money){
account.set(account.get()+money);
}
public int getAccount(){
return account.get();
}
}
注:ThreadLocal与同步机制
a.ThreadLocal与同步机制都是为了解决多线程中相同变量的访问冲突问题。
b.前者采用以"空间换时间"的方法,后者采用以"时间换空间"的方式
synchronized 与 Lock
一.synchronized的缺陷
synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?
如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:
1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
2)线程执行发生异常,此时JVM会让线程自动释放锁。
那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。
因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。
再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。
但是采用synchronized关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:
1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
二、锁的相关概念介绍
1.可重入锁
如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
class MyClass {
public synchronized void method1() {
method2();
}
public synchronized void method2() {
}
}
上述代码中的两个方法method1和method2都用synchronized修饰了,
假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,
而由于method2也是synchronized方法,假如synchronized不具备可重入性,
此时线程A需要重新申请锁。
但是这就会造成一个问题,
因为线程A已经持有了该对象的锁,
而又在申请获取该对象的锁,
这样就会线程A一直等待永远不会获取到的锁。
而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
2.可中断锁
可中断锁:顾名思义,就是可以相应中断的锁。
在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。
在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。
3.公平锁
公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该锁,这种就是公平锁。
非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。
而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。
三、synchronized锁优化机制
内置锁是JVM提供的最便捷的线程同步工具,在代码块或方法声明上添加synchronized关键字即可使用内置锁。使用内置锁能够简化并发模型;随着JVM的升级,几乎不需要修改代码,就可以直接享受JVM在内置锁上的优化成果。从简单的重量级锁,到逐渐膨胀的锁分配策略,使用了多种优化手段解决隐藏在内置锁下的基本问题。
重量级锁
内置锁在Java中被抽象为监视器锁(monitor)。在JDK 1.6之前,监视器锁可以认为直接对应底层操作系统中的互斥量(mutex)。这种同步方式的成本非常高,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。因此,后来称这种锁为“重量级锁”。
自旋锁
首先,内核态与用户态的切换上不容易优化。但通过自旋锁,可以减少线程阻塞造成的线程切换(包括挂起线程和恢复线程)。
如果锁的粒度小,那么锁的持有时间比较短(尽管具体的持有时间无法得知,但可以认为,通常有一部分锁能满足上述性质)。那么,对于竞争这些锁的而言,因为锁阻塞造成线程切换的时间与锁持有的时间相当,减少线程阻塞造成的线程切换,能得到较大的性能提升。具体如下:
- 当前线程竞争锁失败时,打算阻塞自己
- 不直接阻塞自己,而是自旋(空等待,比如一个空的有限for循环)一会
- 在自旋的同时重新竞争锁
- 如果自旋结束前获得了锁,那么锁获取成功;否则,自旋结束后阻塞自己
如果在自旋的时间内,锁就被旧owner释放了,那么当前线程就不需要阻塞自己(也不需要在未来锁释放时恢复),减少了一次线程切换。
“锁的持有时间比较短”这一条件可以放宽。实际上,只要锁竞争的时间比较短(比如线程1快释放锁的时候,线程2才会来竞争锁),就能够提高自旋获得锁的概率。这通常发生在锁持有时间长,但竞争不激烈的场景中。
缺点
- 单核处理器上,不存在实际的并行,当前线程不阻塞自己的话,旧owner就不能执行,锁永远不会释放,此时不管自旋多久都是浪费;进而,如果线程多而处理器少,自旋也会造成不少无谓的浪费。
- 自旋锁要占用CPU,如果是计算密集型任务,这一优化通常得不偿失,减少锁的使用是更好的选择。
- 如果锁竞争的时间比较长,那么自旋通常不能获得锁,白白浪费了自旋占用的CPU时间。这通常发生在锁持有时间长,且竞争激烈的场景中,此时应主动禁用自旋锁。
自适应自旋锁
自适应意味着自旋的时间不再固定了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定:
- 如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间,比如100个循环。
- 相反的,如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能减少自旋时间甚至省略自旋过程,以避免浪费处理器资源。
自适应自旋解决的是“锁竞争时间不确定”的问题。JVM很难感知到确切的锁竞争时间,而交给用户分析就违反了JVM的设计初衷。自适应自旋假定不同线程持有同一个锁对象的时间基本相当,竞争程度趋于稳定,因此,可以根据上一次自旋的时间与结果调整下一次自旋的时间。
缺点
然而,自适应自旋也没能彻底解决该问题,如果默认的自旋次数设置不合理(过高或过低),那么自适应的过程将很难收敛到合适的值。
轻量级锁
自旋锁的目标是降低线程切换的成本。如果锁竞争激烈,我们不得不依赖于重量级锁,让竞争失败的线程阻塞;如果完全没有实际的锁竞争,那么申请重量级锁都是浪费的。轻量级锁的目标是,减少无实际竞争情况下,使用重量级锁产生的性能消耗,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。
顾名思义,轻量级锁是相对于重量级锁而言的。使用轻量级锁时,不需要申请互斥量,仅仅将Mark Word中的部分字节CAS更新指向线程栈中的Lock Record,如果更新成功,则轻量级锁获取成功,记录锁状态为轻量级锁;否则,说明已经有线程获得了轻量级锁,目前发生了锁竞争(不适合继续使用轻量级锁),接下来膨胀为重量级锁。
当然,由于轻量级锁天然瞄准不存在锁竞争的场景,如果存在锁竞争但不激烈,仍然可以用自旋锁优化,自旋失败后再膨胀为重量级锁。
缺点
同自旋锁相似:
如果锁竞争激烈,那么轻量级将很快膨胀为重量级锁,那么维持轻量级锁的过程就成了浪费。
偏向锁
在没有实际竞争的情况下,还能够针对部分场景继续优化。如果不仅仅没有实际竞争,自始至终,使用锁的线程都只有一个,那么,维护轻量级锁都是浪费的。偏向锁的目标是,减少无竞争且只有一个线程使用锁的情况下,使用轻量级锁产生的性能消耗。轻量级锁每次申请、释放锁都至少需要一次CAS,但偏向锁只有初始化时需要一次CAS。
“偏向”的意思是,偏向锁假定将来只有第一个申请锁的线程会使用锁(不会有任何线程再来申请锁),因此,只需要在Mark Word中CAS记录owner(本质上也是更新,但初始值为空),如果记录成功,则偏向锁获取成功,记录锁状态为偏向锁,以后当前线程等于owner就可以零成本的直接获得锁;否则,说明有其他线程竞争,膨胀为轻量级锁。
偏向锁无法使用自旋锁优化,因为一旦有其他线程申请锁,就破坏了偏向锁的假定。
偏向锁、轻量级锁、重量级锁适用于不同的并发场景:
偏向锁:无实际竞争,且将来只有第一个申请锁的线程会使用锁。
轻量级锁:无实际竞争,多个线程交替使用锁;允许短时间的锁竞争。
重量级锁:有实际竞争,且锁竞争时间长。
另外,如果锁竞争时间短,可以使用自旋锁进一步优化轻量级锁、重量级锁的性能,减少线程切换。
如果锁竞争程度逐渐提高(缓慢),那么从偏向锁逐步膨胀到重量锁,能够提高系统的整体性能。
CAS(Compare And Swap)
CAS(Compare-and-Swap),即比较并替换,是一种实现并发算法时常用到的技术,Java并发包中的很多类都使用了CAS技术。CAS也是现在面试经常问的问题
CAS指令执行时,当且仅当内存地址V的值与预期值A相等时,将内存地址V的值修改为B,否则就什么都不做。整个比较并替换的操作是一个原子操作。
if (this == expect) {
this = update
return true;
} else {
return false;
}
AS的缺点:
CAS虽然很高效的解决了原子操作问题,但是CAS仍然存在三大问题。
- 循环时间长开销很大。
- 只能保证一个共享变量的原子操作。
- ABA问题。
循环时间长开销很大:
我们可以看到getAndAddInt方法执行时,如果CAS失败,会一直进行尝试。如果CAS长时间一直不成功,可能会给CPU带来很大的开销。
只能保证一个共享变量的原子操作:
当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁来保证原子性。
什么是ABA问题?ABA问题怎么解决?
如果内存地址V初次读取的值是A,并且在准备赋值的时候检查到它的值仍然为A,那我们就能说它的值没有被其他线程改变过了吗?
如果在这段期间它的值曾经被改成了B,后来又被改回为A,那CAS操作就会误认为它从来没有被改变过。这个漏洞称为CAS操作的“ABA”问题。Java并发包为了解决这个问题,提供了一个带有标记的原子引用类“AtomicStampedReference”,它可以通过控制变量值的版本来保证CAS的正确性。因此,在使用CAS前要考虑清楚“ABA”问题是否会影响程序并发的正确性,如果需要解决ABA问题,改用传统的互斥同步可能会比原子类更高效。
四、Reentrantlock
ReenTrantLock独有的能力:
-
ReenTrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。
-
ReenTrantLock提供了一个Condition(条件)类,用来实现分组唤醒需要唤醒的线程们,而不是像synchronized要么随机唤醒一个线程要么唤醒全部线程。
-
ReenTrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。
ReenTrantLock实现的原理:
简单来说,ReenTrantLock的实现是一种自旋锁,通过循环调用CAS操作来实现加锁。它的性能比较好也是因为避免了使线程进入内核态的阻塞状态。想尽办法避免线程进入内核的阻塞状态是我们去分析和理解锁设计的关键钥匙。
五、Reentrantlock 与 synchronized
可重入性:
从名字上理解,ReenTrantLock的字面意思就是再进入的锁,其实synchronized关键字所使用的锁也是可重入的,两者关于这个的区别不大。两者都是同一个线程没进入一次,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。
锁的实现:
Synchronized是依赖于JVM实现的,而ReenTrantLock是JDK实现的,有什么区别,说白了就类似于操作系统来控制实现和用户自己敲代码实现的区别。前者的实现是比较难见到的,后者有直接的源码可供阅读。
性能的区别:
在Synchronized优化以前,synchronized的性能是比ReenTrantLock差很多的,但是自从Synchronized引入了偏向锁,轻量级锁(自旋锁)后,两者的性能就差不多了,在两种方法都可用的情况下,官方甚至建议使用synchronized,其实synchronized的优化我感觉就借鉴了ReenTrantLock中的CAS技术。都是试图在用户态就把加锁问题解决,避免进入内核态的线程阻塞。
功能区别:
便利性:很明显Synchronized的使用比较方便简洁,并且由编译器去保证锁的加锁和释放,而ReenTrantLock需要手工声明来加锁和释放锁,为了避免忘记手工释放锁造成死锁,所以最好在finally中声明释放锁。
锁的细粒度和灵活度:很明显ReenTrantLock优于Synchronized