遗传学比较与进化基因组学

【GS文献】全基因组选择模型研究进展及展望

2020-11-27  本文已影响0人  生物信息与育种

文献来源:
尹立林, 马云龙, 项韬, 朱猛进, 余梅, 李新云, 刘小磊, 赵书红. 全基因组选择模型研究进展及展望[J]. 畜牧兽医学报, 2019, 50(2): 233-242.
华中农大赵书红老师于2019年发表在《 畜牧兽医学报》上的综述,主要针对动物。

1. GS概况

2. GS模型

1)直接法

把个体作为随机效应,参考群体和预测群体遗传信息构建的亲缘关系矩阵作为方差协方差矩阵,通过迭代法估计方差组分,进而求解混合模型获取待预测个体的估计育种值。

GBLUP

直接法的混合线性模型:

image.png

Vanraden方法计算G矩阵:

image.png

REML计算育种值:
采用约束最大似然法(REML)估计方差组分,计算育种值。

image.png

G矩阵/GBLUP优点:

GBLUP缺点:

直接法的模型改进

主要有两类:

①单随机效应

仍然在GBLUP模型中设置一个随机效应(不包含残差效应),但是在构建G矩阵过程中,对不同标记给予权重,称之为性状特异关系矩阵。

image.png
image.png

SSBLUP不仅可以估计被基因分型个体的育种值,而且可以估计未进行基因分型个体的育种值。
SSBLUP在猪全基因组选择上存在较大优势,是当前猪全基因组选择中最为广泛使用的方法之一。

②多随机效应

将标记分类,按照不同染色体区域、与性状关联程度大小等条件,将标记分为不同的组别,在模型中设置两个或多个随机效应。

多随机效应灵活多变,但是当群体不断增加,多随机效应的方差组分估计成为一大难题,也成为多随机效应模型受制约的关键因素。

2)间接法

间接法模型

image.png

多元回归的标记效应方程:

image.png

间接法重点和难点在于如何对超参的先验分布,即对gi及其方差服从的分布进行合理假设。

几种经典Bayes方法的先验假设区别:

image.png

符合更复杂假设的模型,如Bayes模型,往往具有更多的待估参数,在提高预测准确度的同时带来了更大的计算量。

基于间接法的模型改进

3. GS模型比较

利用第16届QTL-MAS Workshop公布的3个模拟性状。该数据共包含4100个个体,其中4000(3000个有表型信息,1000个无表型信息)个个体具有基因型,因此需要预测的个体为1000个具有基因型的个体及100个无基因型个体。


image.png

模型比较结论

4.问题及展望

上一篇 下一篇

猜你喜欢

热点阅读