CaffeCaffe深度学习-推荐系统-CV-NLP

Caffe源码解读:Blob类

2017-07-23  本文已影响246人  Mordekaiser

Caffe里面有几个基本的类:Blob,Net,Layer,Solver。其中Blob类是caffe最基本的数据结构,是一个多维数组,且自动在CPU和GPU之间实现数据同步。对于图像数据而言,维度为4,从低到高表示为:width_, height_, channels_, num_。有点像Tensorflow里面的tensor一样。一层层的Layer组成了Net,Blob在Layer之间传播(反向,前向传播)。利用Solver求解优化。
首先介绍下ProtoBuffer,它是一种高效的结构化存储格式。其实其主要的有点就是解决了数据的序列化,反序列化问题,不用程序员去操心,而且相比其他工具而言,速度快。总之就是方便数据存储。

目录

Blob的ProtoBuffer描述

首先看看./src/caffe/proto/caffe.proto文件关于BlobProto部分的描述(下面部分描述实际上是说明了Blob在磁盘中的存储方式,因为数据为了存储到磁盘,需要进行序列化,序列化哪些东西需要做一个约定,下面就是约定的内容):

// BlobShape类的定义
message BlobShape {
 // 指定了Blob的维度信息,packed表示在内存中精密排布,没有空洞
 repeated int64 dim = 1 [packed = true];
}

// BlobProto类的定义:Blob在磁盘中序列化后的形态
message BlobProto {
 optional BlobShape shape = 7;  // 可选,包括一个BlobShape对象
 repeated float data = 5 [packed = true]; // 包含若干浮点元素,在内存中紧密排布,用于存储数据或权值
 repeated float diff = 6 [packed = true]; // 包含若干浮点元素,在内存中紧密排布,用于梯度
 repeated double double_data = 8 [packed = true];// 同上,类型为double而已
 repeated double double_diff = 9 [packed = true];

 // 可选维度信息,新版本推荐使用shape代替
 optional int32 num = 1 [default = 0];
 optional int32 channels = 2 [default = 0];
 optional int32 height = 3 [default = 0];
 optional int32 width = 4 [default = 0];
}

Blob类声明文件详解

接下来看看./include/caffe/blob.hpp文件,里面有Blob类的定义:

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"  // 包含了遵循caffe.proto描述的BlobProto,BlobShape类
#include "caffe/syncedmem.hpp"  // 共享内存类,用于CPU,GPU数据的同步
const int kMaxBlobAxes = 32;  // Blob最大维度为32维,通常为4维

// Blob类声明位于caffe名字空间内,其成员带有下划线,如: shape_
namespace caffe {

template <typename Dtype>
class Blob {
 protected:
  shared_ptr<SyncedMemory> data_;   // 存储图像数据
  shared_ptr<SyncedMemory> diff_;   // 存储反向传播中的梯度,和data_大小一致
  shared_ptr<SyncedMemory> shape_data_;  // 共享内存类对象,存储着shape_需要的字节数
  vector<int> shape_;  // 数据的shape
  int count_;  // 存储Blob所有元素数量
  int capacity_;    // 存储Blob的容量信息,count_ <= capacity的,如果超过了(比如Reshape时),就要重新new内存

  // 为了实现单例模式,禁用拷贝和析构
  DISABLE_COPY_AND_ASSIGN(Blob);  
 public:
  Blob()      // 默认构造函数
       : data_(), diff_(), count_(0), capacity_(0) {}
  // 显式构造函数,新版caffe推荐使用第二种
  explicit Blob(const int num, const int channels, const int height,
      const int width);
  explicit Blob(const vector<int>& shape);

  // Reshape函数,必要时可以重新分配内存
  void Reshape(const int num, const int channels, const int height,
      const int width);
  void Reshape(const vector<int>& shape);
  void Reshape(const BlobShape& shape);
  void ReshapeLike(const Blob& other);
  
  // 打印shape信息,如:1 2 3 4 (24)
  inline string shape_string() const {
    ostringstream stream;
    for (int i = 0; i < shape_.size(); ++i) {
      stream << shape_[i] << " ";
    }
    stream << "(" << count_ << ")";
    return stream.str();
  }
  
  // 返回shape信息
  inline const vector<int>& shape() const { return shape_; }
 
  // 返回第index维度的大小,index可以为负值,像python一样
  inline int shape(int index) const {
    return shape_[CanonicalAxisIndex(index)];
  }

  // 返回维度数
  inline int num_axes() const { return shape_.size(); }
  // 返回Blob里面的元素数量:所有维度大小相乘
  inline int count() const { return count_; }

  // 返回[start_axis, end_axis)维度里面的元素数量
  inline int count(int start_axis, int end_axis) const {
    // 下面是一系列宏定义,校验输入是否正确
    // L表示less, E表示equal, G表示great
    // 下面不允许[-1, -2)这种输入,可以优化
    CHECK_LE(start_axis, end_axis);
    CHECK_GE(start_axis, 0);
    CHECK_GE(end_axis, 0);
    CHECK_LE(start_axis, num_axes());
    CHECK_LE(end_axis, num_axes());
    int count = 1;
    for (int i = start_axis; i < end_axis; ++i) {
      count *= shape(i);
    }
    return count;
  }
 
  // 计算从某一维度起的元素数目
  inline int count(int start_axis) const {
    return count(start_axis, num_axes());
  }

  // 负数索引转换函数
  inline int CanonicalAxisIndex(int axis_index) const {
    CHECK_GE(axis_index, -num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    CHECK_LT(axis_index, num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    if (axis_index < 0) {
      return axis_index + num_axes();
    }
    return axis_index;
  }

  // 获取第一维的大小, 推荐使用shape(0),下面其他类似
  inline int num() const { return LegacyShape(0); } 
  inline int channels() const { return LegacyShape(1); }
  inline int height() const { return LegacyShape(2); }
  inline int width() const { return LegacyShape(3); }

  // 求某一维度的大小,老版本的接口
  inline int LegacyShape(int index) const {
    CHECK_LE(num_axes(), 4)
        << "Cannot use legacy accessors on Blobs with > 4 axes.";
    CHECK_LT(index, 4);
    CHECK_GE(index, -4);
    if (index >= num_axes() || index < -num_axes()) {
      return 1;
    }
    return shape(index);
  }

  // 下面函数是计算偏移量的, 
  //比如大小为(2, 3, 5, 5)的Blob,(1, 0, 0, 0)其在内存中的存储位置是75:(1, 0, 0, 0)表示的是第二张图片的第0个通道的第0行0列
  inline int offset(const int n, const int c = 0, const int h = 0,
      const int w = 0) const {
    CHECK_GE(n, 0);
    CHECK_LE(n, num());
    CHECK_GE(channels(), 0);
    CHECK_LE(c, channels());
    CHECK_GE(height(), 0);
    CHECK_LE(h, height());
    CHECK_GE(width(), 0);
    CHECK_LE(w, width());
    return ((n * channels() + c) * height() + h) * width() + w;
  }

  // 功能同上
  inline int offset(const vector<int>& indices) const {
    CHECK_LE(indices.size(), num_axes());
    int offset = 0;
    for (int i = 0; i < num_axes(); ++i) {
      offset *= shape(i);
      if (indices.size() > i) {
        CHECK_GE(indices[i], 0);
        CHECK_LT(indices[i], shape(i));
        offset += indices[i];
      }
    }
    return offset;
  }
  /**
   * @brief 从某一Blob拷贝数据
   *
   * @param source:拷贝源
   * @param copy_diff:是否拷贝梯度信息
   * @param reshape :是否调整大小为source的大小,如果不调整,需要保证拷贝的数据之间大小是一致的,否则会报错
   */
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
      bool reshape = false);

  // 访问某个元素
  inline Dtype data_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_data()[offset(n, c, h, w)];  // 猜想此处cpu_data()应该是返回指针
  }
  // 访问某个元素的梯度
  inline Dtype diff_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_diff()[offset(n, c, h, w)];
  }
  // 类似上述两个函数,不在赘述
  inline Dtype data_at(const vector<int>& index) const {
    return cpu_data()[offset(index)];
  }
  inline Dtype diff_at(const vector<int>& index) const {
    return cpu_diff()[offset(index)];
  }
  // 返回指向数据的指针,注意此处用了shared_ptr。并且使用共享内存类,实现了CPU和GPU数据同步,不管数据在CPU还是GPU都可以取出来。下面类似
  inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;
  }
  inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;
  }

  // 只读访问cpu数据
  const Dtype* cpu_data() const;
  // 设置cpu数据
  void set_cpu_data(Dtype* data);
  //  返回gpu数据的shape?这块没懂,看对应的.cpp感觉好奇怪
  const int* gpu_shape() const;
  // 下面就是读写访问cpu,gpu里面的数据以及梯度
  const Dtype* gpu_data() const;
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();
  
  // 根据梯度更新data_: x = x - learning_rate * tidu(x)
  void Update();
  // 反序列化,从BlobProto中恢复Blob
  void FromProto(const BlobProto& proto, bool reshape = true);
  // 序列化,将内存中的Blob对象保存到BlobProto中
  void ToProto(BlobProto* proto, bool write_diff = false) const;

  // 计算data_,diff_的L1,L2范数
  Dtype asum_data() const;
  Dtype asum_diff() const;
  Dtype sumsq_data() const;
  Dtype sumsq_diff() const;

  // data_, diff_乘以一个倍数
  void scale_data(Dtype scale_factor);
  void scale_diff(Dtype scale_factor);

  // 共享另一个Blob的data_, diff_
  void ShareData(const Blob& other);
  void ShareDiff(const Blob& other);

  // 判断Blob的大小是否相等
  bool ShapeEquals(const BlobProto& other);


};  // class Blob

}  // namespace caffe

#endif  // CAFFE_BLOB_HPP_

Blob类定义文件详解

阅读caffe源码三部曲,先proto文件,然后.hpp,然后.cpp。下面就来看看./src/caffe/blob.cpp,很多函数其实已经在类声明里面实现了~:

#include <climits>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {
// Reshape函数,将维度信息转为vector<int>,然后调用另一个Reshape函数
// 这种设计思路可以借鉴,为了方便用户,实现多个不同的接口,但是内部实现均转换为一种接口
template <typename Dtype>   
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
    const int width) {
  vector<int> shape(4);
  shape[0] = num;
  shape[1] = channels;
  shape[2] = height;
  shape[3] = width;
  Reshape(shape);
}

template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes);
  count_ = 1;
  shape_.resize(shape.size());
  // 重新分配shape_data_的内存
  if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) {
    shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int)));
  }
  int* shape_data = static_cast<int*>(shape_data_->mutable_cpu_data());
  for (int i = 0; i < shape.size(); ++i) {
    CHECK_GE(shape[i], 0);
    if (count_ != 0) {
      // 保证cout_不超过INT_MAX,否则到后面数据溢出就麻烦了
      CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    }
    count_ *= shape[i];
    shape_[i] = shape[i];
    shape_data[i] = shape[i];
  }
  if (count_ > capacity_) {  // 如果count_超出当前容量,则扩容
    capacity_ = count_;
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}
 // 同上
template <typename Dtype>
void Blob<Dtype>::Reshape(const BlobShape& shape) {
  CHECK_LE(shape.dim_size(), kMaxBlobAxes);
  vector<int> shape_vec(shape.dim_size());
  for (int i = 0; i < shape.dim_size(); ++i) {
    shape_vec[i] = shape.dim(i);
  }
  Reshape(shape_vec);
}
template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
  Reshape(other.shape());
}

// 构造函数
template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
    const int width)
  // 在调用Reshape之前,capacity_ 必须被初始化,下同
  : capacity_(0) {
  Reshape(num, channels, height, width);
}
template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
  : capacity_(0) {
  Reshape(shape);
}

// 返回gpu里面的shape信息,之所以用(const int*)是因为返回值是const void*,且shape信息是int型的数组
template <typename Dtype>
const int* Blob<Dtype>::gpu_shape() const {
  CHECK(shape_data_);
  return (const int*)shape_data_->gpu_data();
}
// 下面这些函数的功能已经在.hpp文件中有所介绍,此处不再赘述
// 关键要注意data_, diff_, shape_data_都是智能指针,其指向SyncedMemory类
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
  CHECK(data_); // 保证data_不为NULL
  return (const Dtype*)data_->cpu_data();
}

template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
  CHECK(data); // 检验数据的合法性,类似的宏都是这种功能
  data_->set_cpu_data(data);
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->gpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->cpu_data();
}

template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->gpu_data();
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_gpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_gpu_data());
}

template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
  CHECK_EQ(count_, other.count());
  data_ = other.data();  // 智能指针赋值,引用计数+1
}

template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
  CHECK_EQ(count_, other.count());
  diff_ = other.diff();
}

// Updata为模型参数更新函数,由于模型参数必然是float或者double的,所以没有定义unsigned和int的模板
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }

template <typename Dtype>
void Blob<Dtype>::Update() {
  // 根据数据在cpu,还是gpu,决定在哪更新
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    // 在CPU进行参数更新
    // 命令行输入:grep -n -H -R "caffe_axpy" *, 可以知道caffe_axpy是一个模板函数
    // 定义在include/caffe/util/math_functions.hpp文件第29行,查看其对应的.cpp文件(如果是GPU上计算,则查看对应的.cu文件)其调用了cblas_saxpy(cublasSaxpy)函数(假如模板参数是float),这个函数MKL库里面的一个函数。这样做只是为了加速。
    // 总之其原理就是:  x = x -  tidu(x)。学习速率在Back_Forward函数里面作为梯度的一部分算在diff_里面了,所以这个caffe_axpy第二个参数是-1。后面会提到,这个要注意。
    caffe_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->cpu_data()),
        static_cast<Dtype*>(data_->mutable_cpu_data()));
    break;
  // 数据在GPU端,或者CPU/GPU数据已经同步
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    // 在GPU上进行参数更新,同上
    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->gpu_data()),
        static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Syncedmem not initialized.";
  }
}

template <> unsigned int Blob<unsigned int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    // 同样的,该函数定义在include/caffe/util/math_functions.hpp文件中106行,之后调用MKL里面的cblas_sasum函数。下同,不在赘述
    return caffe_cpu_asum(count_, cpu_data());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_data(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_diff());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_diff(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
  Dtype sumsq;
  const Dtype* data;
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = cpu_data();
    sumsq = caffe_cpu_dot(count_, data, data);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = gpu_data();
    caffe_gpu_dot(count_, data, data, &sumsq);
#else
    NO_GPU;
#endif
    break;
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
  Dtype sumsq;
  const Dtype* diff;
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = cpu_diff();
    sumsq = caffe_cpu_dot(count_, diff, diff);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = gpu_diff();
    caffe_gpu_dot(count_, diff, diff, &sumsq);
    break;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_data(int scale_factor) {
  NOT_IMPLEMENTED;
}

template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
  Dtype* data;
  if (!data_) { return; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = mutable_cpu_data();
    caffe_scal(count_, scale_factor, data);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = mutable_gpu_data();
    caffe_gpu_scal(count_, scale_factor, data);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
}

template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_diff(int scale_factor) {
  NOT_IMPLEMENTED;
}

template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
  Dtype* diff;
  if (!diff_) { return; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = mutable_cpu_diff();
    caffe_scal(count_, scale_factor, diff);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = mutable_gpu_diff();
    caffe_gpu_scal(count_, scale_factor, diff);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
}

// 上面的代码实现都是一个套路,不在详说
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
  if (other.has_num() || other.has_channels() ||
      other.has_height() || other.has_width()) {
    // 从末尾开始索引比较看似快,可还要把负数索引转换为正数,用意何在?
    return shape_.size() <= 4 &&
           LegacyShape(-4) == other.num() &&
           LegacyShape(-3) == other.channels() &&
           LegacyShape(-2) == other.height() &&
           LegacyShape(-1) == other.width();
  }
  vector<int> other_shape(other.shape().dim_size());
  for (int i = 0; i < other.shape().dim_size(); ++i) {
    other_shape[i] = other.shape().dim(i);
  }
  return shape_ == other_shape;
}

template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
  if (source.count() != count_ || source.shape() != shape_) {
    if (reshape) { // 如果有必要就Reshape
      ReshapeLike(source);
    } else {
      LOG(FATAL) << "Trying to copy blobs of different sizes.";
    }
  }
  switch (Caffe::mode()) {
  case Caffe::GPU:
    if (copy_diff) {
      // 同样的套路,输入: grep -n -H -R "caffe_copy"         
      // 发现在*math_functions.hpp:37行有函数定义,查看对应的.cpp文件,发现调用了cudaMemcpy函数(cpu中调用的是memcpy函数)。
      // 此处用case多此一举,因为caffe_copy函数还会做一次判断
      caffe_copy(count_, source.gpu_diff(),
          static_cast<Dtype*>(diff_->mutable_gpu_data()));
    } else {
      caffe_copy(count_, source.gpu_data(),
          static_cast<Dtype*>(data_->mutable_gpu_data()));
    }
    break;
  case Caffe::CPU:
    if (copy_diff) {
      caffe_copy(count_, source.cpu_diff(),
          static_cast<Dtype*>(diff_->mutable_cpu_data()));
    } else {
      caffe_copy(count_, source.cpu_data(),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}

// 数据反序列化到Blob
template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
  if (reshape) {
    vector<int> shape;
    if (proto.has_num() || proto.has_channels() ||
        proto.has_height() || proto.has_width()) {
      // 老版本的方法
      shape.resize(4);
      shape[0] = proto.num();
      shape[1] = proto.channels();
      shape[2] = proto.height();
      shape[3] = proto.width();
    } else {
      shape.resize(proto.shape().dim_size());
      for (int i = 0; i < proto.shape().dim_size(); ++i) {
        shape[i] = proto.shape().dim(i);
      }
    }
    Reshape(shape);
  } else {
    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
  }
  // copy data
  Dtype* data_vec = mutable_cpu_data();
  if (proto.double_data_size() > 0) {  // 如果proto里面的是double类型的data
    CHECK_EQ(count_, proto.double_data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.double_data(i);
    }
  } else {// 若为float
    CHECK_EQ(count_, proto.data_size());
    for (int i = 0; i < count_; ++i) {
      data_vec[i] = proto.data(i);
    }
  }
  if (proto.double_diff_size() > 0) {  // 如果proto里面的是double类型的diff
    CHECK_EQ(count_, proto.double_diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.double_diff(i);
    }
  } else if (proto.diff_size() > 0) {  // 若为float 
    CHECK_EQ(count_, proto.diff_size());
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.diff(i);
    }
  }
}

template <>
void Blob<double>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_double_data();
  proto->clear_double_diff();
  const double* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_double_data(data_vec[i]);
  }
  if (write_diff) {
    const double* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_double_diff(diff_vec[i]);
    }
  }
}

template <>
void Blob<float>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();  // 重置proto的维度,保证与Blob的相同
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]); // 维度赋值
  }
  proto->clear_data();
  proto->clear_diff();
  const float* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_data(data_vec[i]);  // data赋值
  }
  if (write_diff) {
    const float* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_diff(diff_vec[i]);  // 如果有必要,diff赋值
    }
  }
}

INSTANTIATE_CLASS(Blob);  // 实例化类模板,减少编译时间?
template class Blob<int>;    // 实例化模板,下同,不提供int, unsigned实现
template class Blob<unsigned int>;

}  // namespace caffe

Blob总算读完啦~其实也没多复杂,关键是得静下来,几个小时也就完事儿了

参考资料

上一篇下一篇

猜你喜欢

热点阅读