模拟集成电路分析与设计

一种4位sar adc工作过程推导(三)

2021-03-31  本文已影响0人  家琛的水笔

4位sar adc采用下图的CDAC,此次讨论参考电压的选取为一般情况下(V_{refP}>V_{refN}),没有设定V_{refN}=0这个条件。

4bit_adc_step4原理图(三)

V_{+}=V_{in},假设\frac{11}{16}(V_{refP}-V_{refN})+V_{refN}<V_{in}<\frac{12}{16}(V_{refP}-V_{refN})+V_{refN}


分析过程:

step0:

4bit_adc_step1(三)

\phi_{1}开关闭合,比较器同相端接Vin,反相端接VrefN,电容负端都接VrefN

电容上存储的电荷为\begin{aligned} &Q=(V_{refN}-V_{refN})\cdot16C=0 \end{aligned}

V_{+}=V_{in}V_{-}=V_{refN}

step1:

4bit_adc_step2(三)

首先将开关\phi_{1}断开,电容8C的负端接VrefP,其余电容接VrefN不变
根据电容上的电荷量相等,可得

\begin{aligned} &(V_{-}-V_{refP})\cdot8C+(V_{-}-V_{refN})\cdot8C=0 \end{aligned}

\Rightarrow V_{-}=\frac{1}{2}(V_{refP}+V_{refN})


\begin{aligned} V_{+}-V_{-}&=V_{in}-\frac{1}{2}(V_{refN}+V_{refN})\\ &=V_{in}-[\frac{1}{2}(V_{refP}-V_{refN})+V_{refN}] \end{aligned}
第1次:V_{in}\frac{1}{2}(V_{refP}-V_{refN})+V_{refN}两者进行比较,则比较器输出为高电平,即最高位D3=1

step2:

4bit_adc_step3(三)

因为最高位D3=1,所以电容8C和4C的负端接VrefP;其余电容的负端保持接VrefN
根据电容上的电荷量相等,可得

\begin{aligned} &(V_{-}-V_{refP})\cdot12C+(V_{-}-V_{refN})\cdot4C=0 \end{aligned}

\Rightarrow V_{-}=\frac{3}{4}V_{refP}+\frac{1}{4}V_{refN}


\begin{aligned} V_{+}-V_{-}&=V_{in}-(\frac{3}{4}V_{refP}+\frac{1}{4}V_{refN})\\ &=V_{in}-[\frac{3}{4}(V_{refP}-V_{refN})+V_{refN}] \end{aligned}
第2次:V_{in}\frac{3}{4}(V_{refP}-V_{refN})+V_{refN}两者进行比较,则比较器输出为低电平,即次高位D2=0

step3:

4bit_adc_step4(三)

因为D3D2=10,所以电容8C和2C的负端接VrefP;其余电容的负端保持接VrefN
根据电容上的电荷量相等,可得

\begin{aligned} &(V_{-}-V_{refP})\cdot10C+(V_{-}-V_{refN})\cdot6C=0 \end{aligned}

\Rightarrow V_{-}=\frac{5}{8}V_{refP}+\frac{3}{8}V_{refN}


\begin{aligned} V_{+}-V_{-}&=V_{in}-(\frac{5}{8}V_{refP}+\frac{3}{8}V_{refN})\\ &=V_{in}-[\frac{5}{8}(V_{refP}-V_{refN})+V_{refN}] \end{aligned}
第3次:V_{in}\frac{5}{8}(V_{refP}-V_{refN})+V_{refN}两者进行比较,则比较器输出为高电平,即次低位D1=1

step4:

4bit_adc_step5(三)

因为D3D2D1=101,所以电容8C、2C和一个电容C的负端接VrefP;其余电容的负端保持接VrefN
根据电容上的电荷量相等,可得

\begin{aligned} &(V_{-}-V_{refP})\cdot11C+(V_{-}-V_{refN})\cdot5C=0 \end{aligned}

\Rightarrow V_{-}=\frac{11}{16}V_{refP}+\frac{5}{16}V_{refN}


\begin{aligned} V_{+}-V_{-}&=V_{in}-(\frac{11}{16}V_{refP}+\frac{5}{16}V_{refN})\\ &=V_{in}-[\frac{11}{16}(V_{refP}-V_{refN})+V_{refN}] \end{aligned}
第4次:V_{in}\frac{11}{16}(V_{refP}-V_{refN})+V_{refN}两者进行比较,则比较器输出为高电平,即最低位D0=1

所以4位sar adc输出数字码为D3D2D1D0=1011


小结

与前文《一种3位sar adc仿真验证》的仿真结果相比,比较器两端不会出现负电压。

电路使用24个电容实现4位sar adc的逐次逼近,是位数较低的sar adc的一种经典实现方式。

欢迎评论,一起交流!

上一篇下一篇

猜你喜欢

热点阅读