加权共表达分析总结
2020-03-01 本文已影响0人
落寞的橙子
经典的WGCNA分析
用于疾病两组比较的MEGENA
用于两组处理比较的DGCA
整合工具CEMiTool
CEMiTool的一段代码如下:
## ----style, echo=FALSE, results="asis", message=FALSE--------------------
knitr::opts_chunk$set(tidy = FALSE,
warning = FALSE,
message = FALSE,
cache=TRUE)
## ------------------------------------------------------------------------
BiocManager::install("CEMiTool")
library("CEMiTool")
# load expression data
data(expr0)
head(expr0[,1:4])
## ---- results='hide'-----------------------------------------------------
cem <- cemitool(expr0)
## ------------------------------------------------------------------------
print(cem)
# or, more conveniently, just call `cem`
cem
## ------------------------------------------------------------------------
# inspect modules
nmodules(cem)
head(module_genes(cem))
## ---- eval=FALSE---------------------------------------------------------
# generate_report(cem, output_format=c("pdf_document", "html_document"))
## ------------------------------------------------------------------------
write_files(cem, directory="./Tables", force=TRUE)
## ------------------------------------------------------------------------
# load your sample annotation data
data(sample_annot)
head(sample_annot)
## ---- results='hide'-----------------------------------------------------
# run cemitool with sample annotation
cem <- cemitool(expr0,sample_annot)
## ------------------------------------------------------------------------
sample_annotation(cem,
sample_name_column="SampleName",
class_column="Class") <- sample_annot
## ------------------------------------------------------------------------
# generate heatmap of gene set enrichment analysis
cem <- mod_gsea(cem)
cem <- plot_gsea(cem)
show_plot(cem, "gsea")
## ------------------------------------------------------------------------
# plot gene expression within each module
cem <- plot_profile(cem)
plots <- show_plot(cem, "profile")
plots[1]
## ------------------------------------------------------------------------
# read GMT file
gmt_fname <- system.file("extdata", "pathways.gmt", package = "CEMiTool")
gmt_in <- read_gmt(gmt_fname)
## ------------------------------------------------------------------------
# perform over representation analysis
cem <- mod_ora(cem, gmt_in)
## ------------------------------------------------------------------------
# plot ora results
cem <- plot_ora(cem)
plots <- show_plot(cem, "ora")
plots[1]
## ------------------------------------------------------------------------
# read interactions
int_fname <- system.file("extdata", "interactions.tsv", package = "CEMiTool")
int_df <- read.delim(int_fname)
head(int_df)
## ------------------------------------------------------------------------
# plot interactions
library(ggplot2)
interactions_data(cem) <- int_df # add interactions
cem <- plot_interactions(cem) # generate plot
plots <- show_plot(cem, "interaction") # view the plot for the first module
plots[3]
## ---- eval=FALSE---------------------------------------------------------
# # run cemitool
# library(ggplot2)
# cem <- cemitool(expr0, sample_annot, gmt_in, interactions=int_df,
# filter=TRUE, plot=TRUE, verbose=TRUE)
# # create report as html document
# generate_report(cem, directory="./Report")
#
# # write analysis results into files
# write_files(cem, directory="./Tables")
#
# # save all plots
# save_plots(cem, "all", directory="./Plots")
## ---- eval=FALSE---------------------------------------------------------
# diagnostic_report(cem, directory="./Diagnostics")