程序员@IT·互联网

ReentrantLock的使用及底层实现原理

2023-12-06  本文已影响0人  我可能是个假开发

一、基本介绍

语法:

// 获取锁
reentrantLock.lock();
try {
  // 临界区
} finally {
  // 释放锁
  reentrantLock.unlock();
}

特点:

1.可重入

同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁;如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住。

@Slf4j
public class ReentrantTest {
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) {
        method1();
    }

    public static void method1() {
        lock.lock();
        try {
            log.debug("execute method1");
            method2();
        } finally {
            lock.unlock();
        }
    }

    public static void method2() {
        lock.lock();
        try {
            log.debug("execute method2");
            method3();
        } finally {
            lock.unlock();
        }
    }

    public static void method3() {
        lock.lock();
        try {
            log.debug("execute method3");
        } finally {
            lock.unlock();
        }
    }
}
20:22:29.392 [main] DEBUG juc.reentrant.ReentrantTest - execute method1
20:22:29.396 [main] DEBUG juc.reentrant.ReentrantTest - execute method2
20:22:29.396 [main] DEBUG juc.reentrant.ReentrantTest - execute method3

实现源码:

final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
            else if (current == getExclusiveOwnerThread()) {
                // state++
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

protected final boolean tryRelease(int releases) {
            // state--
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            // 支持锁重入, 只有 state 减为 0, 才释放成功
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

2.可打断

在等待锁的过程中,其他线程可以使用interrupt方法中止当前线程的等待。
可以防止死锁的发生,线程不用一直等下去。

@Slf4j
public class InterruptTest {

    private static ReentrantLock reentrantLock = new ReentrantLock();

    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(()->{
            try {
                //竞争锁失败进入阻塞队列,可以被其他线程调用interrupt方法打断
                log.debug("t1线程开始抢锁");
                reentrantLock.lockInterruptibly();
            } catch (InterruptedException e) {
                //抢锁失败进入了阻塞队列然后被打断了就进入这个catch块
                e.printStackTrace();
                log.debug("t1线程被打断,返回");
                return;
            }
            try{
                log.debug("t1线程抢锁成功");
            }finally {
                reentrantLock.unlock();
            }
        },"t1");
        //主线程先抢锁
        log.debug("main线程开始抢锁");
        reentrantLock.lock();
        log.debug("main线程抢锁成功");
        //t1线程启动开始抢锁,抢锁失败
        t1.start();
        Thread.sleep(1000);
        log.debug("main线程打断正在阻塞的t1线程");
        t1.interrupt();
    }
}
10:09:47.246 [main] DEBUG juc.reentrant.InterruptTest - main线程开始抢锁
10:09:47.248 [main] DEBUG juc.reentrant.InterruptTest - main线程抢锁成功
10:09:47.249 [t1] DEBUG juc.reentrant.InterruptTest - t1线程开始抢锁
10:09:48.250 [main] DEBUG juc.reentrant.InterruptTest - main线程打断正在阻塞的t1线程
10:09:48.251 [t1] DEBUG juc.reentrant.InterruptTest - t1线程被打断,返回
java.lang.InterruptedException
    at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchronizer.java:898)
    at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1222)
    at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
    at juc.reentrant.InterruptTest.lambda$main$0(InterruptTest.java:25)
    at java.lang.Thread.run(Thread.java:748)

进入synchronized临界区的代码可以被打断,lockInterruptibly是获取锁失败被阻塞的过程可以被打断。

不可打断模式:
在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了

    private final boolean parkAndCheckInterrupt() {
        // 如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // interrupted 会清除打断标记
        return Thread.interrupted();
    }

final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    // 需要获得锁后, 才能返回打断状态
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            // 如果打断状态为 true
            selfInterrupt();
    }

    static void selfInterrupt() {
        // 重新产生一次中断
        Thread.currentThread().interrupt();
    }

可打断模式:

    public final void acquireInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 如果没有获得到锁, 进入 ㈠
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

// ㈠ 可打断的获取锁流程
private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                // 在 park 过程中如果被 interrupt 会进入此,这时候抛出异常, 不会再次进入 for (;;)
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

3.设置超时时间

@Slf4j
public class TimeoutTest {
    public static void main(String[] args) {
        test1();
    }

    private static void test1() {
        ReentrantLock lock = new ReentrantLock();
        Thread t1 = new Thread(() -> {
            log.debug("t1线程启动...");
            try {
                //获取不到会等待timeout时间,如果再抢不到就返回
                if (!lock.tryLock(1, TimeUnit.SECONDS)) {
                    log.debug("尝试获取锁,等待 1s 后,失败,返回");
                    return;
                }
            } catch (InterruptedException e) {
                log.debug("t1线程被打断,获取锁失败",e);
                return;
            }
            try {
                log.debug("t1抢锁成功");
            } finally {
                lock.unlock();
            }
        }, "t1");

        lock.lock();
        log.debug("main抢锁成功");
        t1.start();
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
    private static void test2() {
        ReentrantLock lock = new ReentrantLock();
        Thread t1 = new Thread(() -> {
            log.debug("t1线程启动...");
            //获取不到不会等待
            if (!lock.tryLock()) {
                log.debug("t1线程抢锁失败,返回");
                return;
            }
            try {
                log.debug("获得了锁");
            } finally {
                lock.unlock();
            }
        }, "t1");

        lock.lock();
        log.debug("main线程抢锁成功");
        t1.start();
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

使用锁超时解决哲学家就餐问题

public class DealPhilosopherMeal {

    public static void main(String[] args) {
        Chopstick c1 = new Chopstick("1");
        Chopstick c2 = new Chopstick("2");
        Chopstick c3 = new Chopstick("3");
        Chopstick c4 = new Chopstick("4");
        Chopstick c5 = new Chopstick("5");
        new Philosopher("苏格拉底", c1, c2).start();
        new Philosopher("柏拉图", c2, c3).start();
        new Philosopher("亚里士多德", c3, c4).start();
        new Philosopher("赫拉克利特", c4, c5).start();
        new Philosopher("阿基米德", c5, c1).start();
    }

}

/**
 * 哲学家类
 */
@Slf4j
class Philosopher extends Thread {
    Chopstick left;
    Chopstick right;

    public Philosopher(String name, Chopstick left, Chopstick right) {
        super(name);
        this.left = left;
        this.right = right;
    }

    @Override
    public void run() {
        while (true) {
            // 尝试获得左手筷子
            if(left.tryLock()){
                try {
                    // 尝试获得右手筷子
                    if (right.tryLock()) {
                        try{
                            eat();
                        }finally {
                            right.unlock();
                        }
                    }
                }finally {
                    left.unlock();
                }
            }

//            // 尝试获得左手筷子
//            synchronized (left) {
//                // 尝试获得右手筷子
//                synchronized (right) {
//                    eat();
//                }
//            }
        }
    }

    Random random = new Random();
    private void eat(){
        log.debug("eating...");
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

/**
 * 筷子类
 */
class Chopstick extends ReentrantLock {
    String name;

    public Chopstick(String name) {
        this.name = name;
    }

    @Override
    public String toString() {
        return "筷子{" + name + '}';
    }
}
11:21:48.096 [柏拉图] DEBUG juc.reentrant.Philosopher - eating...
11:21:48.097 [赫拉克利特] DEBUG juc.reentrant.Philosopher - eating...
11:21:49.104 [亚里士多德] DEBUG juc.reentrant.Philosopher - eating...
11:21:49.104 [阿基米德] DEBUG juc.reentrant.Philosopher - eating...
11:21:50.106 [柏拉图] DEBUG juc.reentrant.Philosopher - eating...
11:21:50.106 [赫拉克利特] DEBUG juc.reentrant.Philosopher - eating...
11:21:51.107 [苏格拉底] DEBUG juc.reentrant.Philosopher - eating...
11:21:51.107 [赫拉克利特] DEBUG juc.reentrant.Philosopher - eating...
11:21:52.110 [苏格拉底] DEBUG juc.reentrant.Philosopher - eating...
···

4.设置为公平锁

    public ReentrantLock() {
        sync = new NonfairSync();
    }
    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

默认为非公平锁,通过传递一个布尔参数来实现公平。

实现原理:

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

// 与非公平锁主要区别在于 tryAcquire 方法的实现
protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

    // (一)
    public final boolean hasQueuedPredecessors() {
        // The correctness of this depends on head being initialized
        // before tail and on head.next being accurate if the current
        // thread is first in queue.
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        // h != t 时表示队列中有 Node
        return h != t &&
            // (s = h.next) == null 表示队列中还有没有老二或者队列中老二线程不是此线程
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }

5.支持多个条件变量

synchronized 中的条件变量,就是waitSet ,当条件不满足时进入 waitSet 等待,状态为waiting。
ReentrantLock 的条件变量比 synchronized 强大之处在于,它是支持多个条件变量,synchronized 是那些不满足条件的线程都在一个集合等消息,而 ReentrantLock 支持多个集合,唤醒时也是按集合来唤醒。
每个条件变量对应着一个等待队列,其实现类是 ConditionObject

使用要点:

public class TestAwait {
    static ReentrantLock reentrantLock = new ReentrantLock();
    public static void main(String[] args) throws InterruptedException {
        Condition condition1 = reentrantLock.newCondition();
        Condition condition2 = reentrantLock.newCondition();
        reentrantLock.lock();
        //进入条件变量中等待
        condition1.await();
        condition1.signalAll();
    }
}
@Slf4j
public class TestAwaitSignal {

    static boolean hasEat = false;
    static boolean hasDrink = false;

    static ReentrantLock room = new ReentrantLock();
    //等喝的waitSet
    static Condition drinkWaitSet = room.newCondition();
    //等吃的waitSet
    static Condition eatWaitSet = room.newCondition();

    public static void main(String[] args) throws InterruptedException {

        new Thread(() -> {
            room.lock();
            try {
                log.debug("有吃的没?[{}]", hasEat);
                while (!hasEat) {
                    log.debug("没吃的,先歇会!");
                    try {
                        eatWaitSet.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                if (hasEat) {
                    log.debug("有吃的,可以开始干活了");
                } else {
                    log.debug("没干成活...");
                }
            }finally {
                room.unlock();
            }

        }, "小红").start();

        new Thread(() -> {
            room.lock();
            try {
                log.debug("有喝的没?[{}]", hasDrink);
                while (!hasDrink) {
                    log.debug("没喝的,先歇会!");
                    try {
                        drinkWaitSet.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                if (hasDrink) {
                    log.debug("有喝的,可以开始干活了");
                } else {
                    log.debug("没干成活...");
                }
            }finally {
                room.unlock();
            }
        }, "小明").start();

        Thread.sleep(1000);

        new Thread(() -> {
            room.lock();
            try {
                hasDrink = true;
                log.debug("喝的送到");
                drinkWaitSet.signal();
            } finally {
                room.unlock();
            }
        }, "送喝的").start();

        new Thread(() -> {
            room.lock();
            try {
                hasEat = true;
                log.debug("吃的送到");
                eatWaitSet.signal();
            } finally {
                room.unlock();
            }
        }, "送吃的").start();

    }
}
14:53:18.641 [小红] DEBUG juc.reentrant.TestAwaitSignal - 有吃的没?[false]
14:53:18.644 [小红] DEBUG juc.reentrant.TestAwaitSignal - 没吃的,先歇会!
14:53:18.644 [小明] DEBUG juc.reentrant.TestAwaitSignal - 有喝的没?[false]
14:53:18.644 [小明] DEBUG juc.reentrant.TestAwaitSignal - 没喝的,先歇会!
14:53:19.645 [送喝的] DEBUG juc.reentrant.TestAwaitSignal - 喝的送到
14:53:19.645 [小明] DEBUG juc.reentrant.TestAwaitSignal - 有喝的,可以开始干活了
14:53:19.646 [送吃的] DEBUG juc.reentrant.TestAwaitSignal - 吃的送到
14:53:19.646 [小红] DEBUG juc.reentrant.TestAwaitSignal - 有吃的,可以开始干活了

await流程
1.开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的addConditionWaiter 流程,创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部

1.png

2.进入 AQS 的 fullyRelease 流程,释放同步器上的锁


2.png

3.unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功


3.png

4.park 阻塞 Thread-0


4.png

signal 流程
1.Thread-1 要来唤醒 Thread-0

image.png
2.进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即Thread-0 所在 Node
image.png

3.执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的waitStatus 改为 0,Thread-3 的waitStatus 改为 -1


image.png

4.Thread-1 释放锁,进入 unlock 流程

二、固定顺序运行

让t2线程先执行:

1.使用wait/notify

@Slf4j
public class OrderRunTest {
    static final Object lock = new Object();
    // 表示 t2 是否运行过
    static boolean t2RunFlag = false;

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            synchronized (lock) {
                while (!t2RunFlag) {
                    try {
                        lock.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("t1执行");
            }
        }, "t1");

        Thread t2 = new Thread(() -> {
            synchronized (lock) {
                log.debug("t2执行");
                t2RunFlag = true;
                lock.notify();
            }
        }, "t2");

        t1.start();
        t2.start();
    }
}
15:26:05.771 [t2] DEBUG juc.reentrant.OrderRunTest - t2执行
15:26:05.775 [t1] DEBUG juc.reentrant.OrderRunTest - t1执行

2.使用await/signal

@Slf4j
public class OrderRunTest2 {
    static ReentrantLock reentrantLock = new ReentrantLock();
    static Condition waitSet = reentrantLock.newCondition();
    // 表示 t2 是否运行过
    static boolean t2RunFlag = false;

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            reentrantLock.lock();
            try {
                while (!t2RunFlag) {
                    try {
                        waitSet.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("t1执行");
            }finally {
                reentrantLock.unlock();
            }
        }, "t1");

        Thread t2 = new Thread(() -> {
            reentrantLock.lock();
            try {
                log.debug("t2执行");
                t2RunFlag = true;
                waitSet.signal();
            }finally {
                reentrantLock.unlock();
            }
        }, "t2");

        t1.start();
        t2.start();
    }
}

3.使用park/unpark

public class Test {
    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            LockSupport.park();
            log.debug("1");
        }, "t1");
        t1.start();

        new Thread(() -> {
            log.debug("2");
            LockSupport.unpark(t1);
        },"t2").start();
    }
}

三、交替运行

1.使用wait/notify

@Slf4j
public class RotateTest {
    public static void main(String[] args) {
        WaitNotify wn = new WaitNotify(1, 5);
        new Thread(() -> wn.print("a", 1, 2)).start();
        new Thread(() -> wn.print("b", 2, 3)).start();
        new Thread(() -> wn.print("c", 3, 1)).start();
    }
}

/*
输出内容       等待标记     下一个标记
   a           1             2
   b           2             3
   c           3             1
 */
@Slf4j
class WaitNotify {
    // 打印               a           1             2
    public void print(String str, int waitFlag, int nextFlag) {
        for (int i = 0; i < loopNumber; i++) {
            synchronized (this) {
                while(flag != waitFlag) {
                    try {
                        this.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.print(str);
                flag = nextFlag;
                this.notifyAll();
            }
        }
    }

    // 等待标记
    private int flag; // 2
    // 循环次数
    private int loopNumber;

    public WaitNotify(int flag, int loopNumber) {
        this.flag = flag;
        this.loopNumber = loopNumber;
    }
}
abcabcabcabcabc

2.使用await/signal

public class RotateTest1 {
    public static void main(String[] args) throws InterruptedException {

        AwaitSignal awaitSignal = new AwaitSignal(5);
        Condition a = awaitSignal.newCondition();
        Condition b = awaitSignal.newCondition();
        Condition c = awaitSignal.newCondition();

        new Thread(() -> awaitSignal.print("a", a, b), "t1").start();
        new Thread(() -> awaitSignal.print("b", b, c), "t2").start();
        new Thread(() -> awaitSignal.print("c", c, a), "t3").start();

        Thread.sleep(1000);
        awaitSignal.lock();
        try {
            a.signal();
        } finally {
            awaitSignal.unlock();
        }
    }
}

class AwaitSignal extends ReentrantLock{

    // 循环次数
    private int loopNumber;

    public AwaitSignal(int loopNumber){
        this.loopNumber = loopNumber;
    }

    /**
     * 打印
     * @param str 打印的字符
     * @param current 当前条件变量
     * @param next 下一个条件变量
     */
    public void print(String str,Condition current,Condition next){
        for (int i = 0; i < loopNumber; i++) {
            lock();
            try{
                try {
                    current.await();
                    System.out.print(str);
                    next.signal();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }finally {
                unlock();
            }
        }
    }
}

3.使用park/unpark

@Slf4j
public class RotateTest2 {

    static Thread t1;
    static Thread t2;
    static Thread t3;
    public static void main(String[] args) {
        ParkUnpark pu = new ParkUnpark(5);
        t1 = new Thread(() -> pu.print("a", t2));
        t2 = new Thread(() -> pu.print("b", t3));
        t3 = new Thread(() -> pu.print("c", t1));
        t1.start();
        t2.start();
        t3.start();

        LockSupport.unpark(t1);
    }
}

class ParkUnpark {
    public void print(String str, Thread next) {
        for (int i = 0; i < loopNumber; i++) {
            LockSupport.park();
            System.out.print(str);
            LockSupport.unpark(next);
        }
    }

    private int loopNumber;

    public ParkUnpark(int loopNumber) {
        this.loopNumber = loopNumber;
    }
}

四、非公平锁实现原理

构造器默认为非公平锁实现:

public ReentrantLock() {
    sync = new NonfairSync();
}

NonfairSync 继承自 AQS
没有竞争时:

final void lock() {
    if (compareAndSetState(0, 1))
        setExclusiveOwnerThread(Thread.currentThread());
    else
        acquire(1);
}
image.png

3.Thread-1 执行了:

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(AbstractQueuedSynchronizer.Node.EXCLUSIVE), arg))
        selfInterrupt();
}
3.png

4.当前线程进入 acquireQueued 逻辑:

final boolean acquireQueued(final AbstractQueuedSynchronizer.Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final AbstractQueuedSynchronizer.Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}
4.png

5.再次有多个线程经历上述过程竞争失败:


image.png

Thread-0 释放锁,进入 tryRelease 流程:

回到 Thread-1 的 acquireQueued 流程:

如果这时候有其它线程来竞争(非公平的体现),例如这时有 Thread-4 来了:


image.png

如果被 Thread-4 先占了:

是否需要 unpark 是由当前节点的前驱节点的 waitStatus == Node.SIGNAL 来决定,而不是本节点的waitStatus 决定

加锁源码:

static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            //首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                // 如果尝试失败,进入 ㈠
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
    // ㈠ AQS 继承过来的方法
    public final void acquire(int arg) {
        // ㈡ tryAcquire
        if (!tryAcquire(arg) &&
            // 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
        // ㈡ 进入 ㈢
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }

      // ㈢ Sync 继承过来的方法
      final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            // 如果还没有获得锁
            if (c == 0) {
                // 尝试用 cas 获得, 这里体现了非公平性: 不去检查 AQS 队列
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
            else if (current == getExclusiveOwnerThread()) {
                // state++
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            // 获取失败, 回到调用处
            return false;
        }

    // ㈣ AQS 继承过来的方法
    private Node addWaiter(Node mode) {
        // 将当前线程关联到一个 Node 对象上, 模式为独占模式
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        // 如果 tail 不为 null, cas 尝试将 Node 对象加入 AQS 队列尾部
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                // 双向链表
                pred.next = node;
                return node;
            }
        }
        // 尝试将 Node 加入 AQS, 进入 ㈥
        enq(node);
        return node;
    }

    // ㈥ AQS 继承过来的方法
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) { // Must initialize
                // 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                // cas 尝试将 Node 对象加入 AQS 队列尾部
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

    // ㈤ AQS 继承过来的方法
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null; // help GC
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                // 判断是否应当 park, 进入 ㈦
                if (shouldParkAfterFailedAcquire(p, node) &&
                    // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    // ㈦ AQS 继承过来的方法
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            // 上一个节点在阻塞, 那么自己也阻塞
            return true;
        // > 0 表示取消状态
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    // ㈧ 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

解锁源码:

    public void unlock() {
        sync.release(1);
    }

    public final boolean release(int arg) {
        // 尝试释放锁, 进入 ㈠
        if (tryRelease(arg)) {
            // 队列头节点 unpark
            Node h = head;
            // 队列不为 null ;waitStatus == Node.SIGNAL 才需要 unpark
            if (h != null && h.waitStatus != 0)
                // unpark AQS 中等待的线程, 进入 ㈡
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
        // ㈠
        protected final boolean tryRelease(int releases) {
            // state--
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            // 支持锁重入, 只有 state 减为 0, 才释放成功
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

    // (二)
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        // 如果状态为 Node.SIGNAL 尝试重置状态为 0 不成功也可以
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        // 找到需要 unpark 的节点, 但本节点从 AQS 队列中脱离, 是由唤醒节点完成的
        Node s = node.next;
        // 不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
上一篇下一篇

猜你喜欢

热点阅读