ionic使用sha1/sha256加密

2017-09-21  本文已影响0人  冷鸢J

在开发中遇到网络请求时需要对密码进行加密处理的需求,在网上花一定的功夫研究整理了sha1和sha256进行加密的文件,分享出来给有需要的人用顺便记录一下ionic中使用js文件的方法

sha1加密:

/**//*  
 * Configurable variables.  
 */  
var hexcase = 0;  /**//* hex output format. 0 - lowercase; 1 - uppercase        */  
var chrsz   = 8;  /**//* bits per input character. 8 - ASCII; 16 - Unicode      */  
   
/**//*  
 * 调用此方法可以转化为sha1值  
 */  
export function toSha1(s)  
{  
       return binb2hex(core_sha1(AlignSHA1(s)));  
}  
   
   
/**//*  
 * Perform a simple self-test to see if the VM is working  
 */  
function sha1_vm_test()  
{  
  return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d";  
}  
   
   
/**//*  
 * Calculate the SHA-1 of an array of big-endian words, and a bit length  
 */  
function core_sha1(blockArray)  
{  
  var x = blockArray;  //append padding  
   
  var w = Array(80);  
  var a =  1732584193;  
  var b = -271733879;  
  var c = -1732584194;  
  var d =  271733878;  
  var e = -1009589776;  
   
  for(var i = 0; i < x.length; i += 16)  //每次处理512位 16*32  
  {  
    var olda = a;  
    var oldb = b;  
    var oldc = c;  
    var oldd = d;  
    var olde = e;  
   
    for(var j = 0; j < 80; j++)  //对每个512位进行80步操作  
    {  
      if(j < 16) w[j] = x[i + j];  
      else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);  
        
      var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)),  
                       safe_add(safe_add(e, w[j]), sha1_kt(j)));  
      e = d;  
      d = c;  
      c = rol(b, 30);  
      b = a;  
      a = t;  
    }  
   
    a = safe_add(a, olda);  
    b = safe_add(b, oldb);  
    c = safe_add(c, oldc);  
    d = safe_add(d, oldd);  
    e = safe_add(e, olde);  
  }  
  return new Array(a, b, c, d, e);  
   
}  
   
   
/**//*  
 * Perform the appropriate triplet combination function for the current iteration  
 * 返回对应F函数的值  
 */  
function sha1_ft(t, b, c, d)  
{  
  if(t < 20) return (b & c) | ((~b) & d);  
  if(t < 40) return b ^ c ^ d;  
  if(t < 60) return (b & c) | (b & d) | (c & d);  
  return b ^ c ^ d;  //t<80  
}  
   
   
/**//*  
 * Determine the appropriate additive constant for the current iteration  
 * 返回对应的Kt值  
 */  
function sha1_kt(t)  
{  
  return (t < 20) ?  1518500249 : (t < 40) ?  1859775393 :  
         (t < 60) ? -1894007588 : -899497514;  
}  
   
   
/**//*  
 * Add integers, wrapping at 2^32. This uses 16-bit operations internally  
 * to work around bugs in some JS interpreters.  
 * 将32位数拆成高16位和低16位分别进行相加,从而实现 MOD 2^32 的加法  
 */  
function safe_add(x, y)  
{  
  var lsw = (x & 0xFFFF) + (y & 0xFFFF);  
  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);  
  return (msw << 16) | (lsw & 0xFFFF);  
}  
   
   
/**//*  
 * Bitwise rotate a 32-bit number to the left.  
 * 32位二进制数循环左移  
 */  
function rol(num, cnt)  
{  
  return (num << cnt) | (num >>> (32 - cnt));  
}  
   
   
/**//*  
 * The standard SHA1 needs the input string to fit into a block  
 * This function align the input string to meet the requirement  
 */  
function AlignSHA1(str){  
  var nblk=((str.length+8)>>6)+1, blks=new Array(nblk*16);  
  for(var i=0;i<nblk*16;i++)blks[i]=0;  
  for(i=0;i<str.length;i++)  
    blks[i>>2]|=str.charCodeAt(i)<<(24-(i&3)*8);  
  blks[i>>2]|=0x80<<(24-(i&3)*8);  
  blks[nblk*16-1]=str.length*8;  
  return blks;  
}  
   
   
/**//*  
 * Convert an array of big-endian words to a hex string.  
 */  
function binb2hex(binarray)  
{  
  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";  
  var str = "";  
  for(var i = 0; i < binarray.length * 4; i++)  
  {  
    str += hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8+4)) & 0xF) +  
           hex_tab.charAt((binarray[i>>2] >> ((3 - i%4)*8  )) & 0xF);  
  }  
  return str;  
}  

sha256加密:

/* 把data转化为sha256的方法入口 */
export function toSha256(data) {
    sha256_init();
    sha256_update(data, data.length);
    sha256_final();
        return sha256_encode_hex();
}
/* SHA256 logical functions */
function rotateRight(n,x) {
    return ((x >>> n) | (x << (32 - n)));
}
function choice(x,y,z) {
    return ((x & y) ^ (~x & z));
}
function majority(x,y,z) {
    return ((x & y) ^ (x & z) ^ (y & z));
}
function sha256_Sigma0(x) {
    return (rotateRight(2, x) ^ rotateRight(13, x) ^ rotateRight(22, x));
}
function sha256_Sigma1(x) {
    return (rotateRight(6, x) ^ rotateRight(11, x) ^ rotateRight(25, x));
}
function sha256_sigma0(x) {
    return (rotateRight(7, x) ^ rotateRight(18, x) ^ (x >>> 3));
}
function sha256_sigma1(x) {
    return (rotateRight(17, x) ^ rotateRight(19, x) ^ (x >>> 10));
}
function sha256_expand(W, j) {
    return (W[j&0x0f] += sha256_sigma1(W[(j+14)&0x0f]) + W[(j+9)&0x0f] + 
sha256_sigma0(W[(j+1)&0x0f]));
}

/* Hash constant words K: */
var K256 = new Array(
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
);

/* global arrays */
var ihash, count, buffer;
var sha256_hex_digits = "0123456789abcdef";

/* Add 32-bit integers with 16-bit operations (bug in some JS-interpreters: 
overflow) */
function safe_add(x, y)
{
    var lsw = (x & 0xffff) + (y & 0xffff);
    var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
    return (msw << 16) | (lsw & 0xffff);
}

/* Initialise the SHA256 computation */
function sha256_init() {
    ihash = new Array(8);
    count = new Array(2);
    buffer = new Array(64);
    count[0] = count[1] = 0;
    ihash[0] = 0x6a09e667;
    ihash[1] = 0xbb67ae85;
    ihash[2] = 0x3c6ef372;
    ihash[3] = 0xa54ff53a;
    ihash[4] = 0x510e527f;
    ihash[5] = 0x9b05688c;
    ihash[6] = 0x1f83d9ab;
    ihash[7] = 0x5be0cd19;
}

/* Transform a 512-bit message block */
function sha256_transform() {
    var a, b, c, d, e, f, g, h, T1, T2;
    var W = new Array(16);

    /* Initialize registers with the previous intermediate value */
    a = ihash[0];
    b = ihash[1];
    c = ihash[2];
    d = ihash[3];
    e = ihash[4];
    f = ihash[5];
    g = ihash[6];
    h = ihash[7];

        /* make 32-bit words */
    for(var i=0; i<16; i++)
        W[i] = ((buffer[(i<<2)+3]) | (buffer[(i<<2)+2] << 8) | (buffer[(i<<2)+1] 
<< 16) | (buffer[i<<2] << 24));

        for(var j=0; j<64; j++) {
        T1 = h + sha256_Sigma1(e) + choice(e, f, g) + K256[j];
        if(j < 16) T1 += W[j];
        else T1 += sha256_expand(W, j);
        T2 = sha256_Sigma0(a) + majority(a, b, c);
        h = g;
        g = f;
        f = e;
        e = safe_add(d, T1);
        d = c;
        c = b;
        b = a;
        a = safe_add(T1, T2);
        }

    /* Compute the current intermediate hash value */
    ihash[0] += a;
    ihash[1] += b;
    ihash[2] += c;
    ihash[3] += d;
    ihash[4] += e;
    ihash[5] += f;
    ihash[6] += g;
    ihash[7] += h;
}

/* Read the next chunk of data and update the SHA256 computation */
function sha256_update(data, inputLen) {
    var i, index, curpos = 0;
    /* Compute number of bytes mod 64 */
    index = ((count[0] >> 3) & 0x3f);
        var remainder = (inputLen & 0x3f);

    /* Update number of bits */
    if ((count[0] += (inputLen << 3)) < (inputLen << 3)) count[1]++;
    count[1] += (inputLen >> 29);

    /* Transform as many times as possible */
    for(i=0; i+63<inputLen; i+=64) {
                for(var j=index; j<64; j++)
            buffer[j] = data.charCodeAt(curpos++);
        sha256_transform();
        index = 0;
    }

    /* Buffer remaining input */
    for(let j=0; j<remainder; j++)
        buffer[j] = data.charCodeAt(curpos++);
}

/* Finish the computation by operations such as padding */
function sha256_final() {
    var index = ((count[0] >> 3) & 0x3f);
        buffer[index++] = 0x80;
        if(index <= 56) {
        for(var i=index; i<56; i++)
            buffer[i] = 0;
        } else {
        for(var i=index; i<64; i++)
            buffer[i] = 0;
                sha256_transform();
                for(var i=0; i<56; i++)
            buffer[i] = 0;
    }
        buffer[56] = (count[1] >>> 24) & 0xff;
        buffer[57] = (count[1] >>> 16) & 0xff;
        buffer[58] = (count[1] >>> 8) & 0xff;
        buffer[59] = count[1] & 0xff;
        buffer[60] = (count[0] >>> 24) & 0xff;
        buffer[61] = (count[0] >>> 16) & 0xff;
        buffer[62] = (count[0] >>> 8) & 0xff;
        buffer[63] = count[0] & 0xff;
        sha256_transform();
}

/* Split the internal hash values into an array of bytes */
function sha256_encode_bytes() {
        var j=0;
        var output = new Array(32);
    for(var i=0; i<8; i++) {
        output[j++] = ((ihash[i] >>> 24) & 0xff);
        output[j++] = ((ihash[i] >>> 16) & 0xff);
        output[j++] = ((ihash[i] >>> 8) & 0xff);
        output[j++] = (ihash[i] & 0xff);
    }
    return output;
}

/* Get the internal hash as a hex string */
function sha256_encode_hex() {
    var output = new String();
    for(var i=0; i<8; i++) {
        for(var j=28; j>=0; j-=4)
            output += sha256_hex_digits.charAt((ihash[i] >>> j) & 0x0f);
    }
    return output;
}

具体使用方法有两种:

在通过d.ts文件声明js文件中的方法时,遇到Object(...) is not a function说明声明失败了,失败的原因可能有两种:

最后放上下载链接,希望可以帮助到需要的人
[sha]: https://github.com/AdamZero/js-sha.git

上一篇 下一篇

猜你喜欢

热点阅读