单细胞学习

单细胞测序分析R包Seurat质量控制小提琴图QC VlnPlo

2020-07-03  本文已影响0人  摸爬滚打的生信菜鸟Cici

单细胞测序分析预处理结束,拿到原始count或者TPM文件后,我们到了下游分析处理环节。

Seurat包是单细胞入门普遍使用的下游分析R包,功能全面,官方网址:https://satijalab.org/seurat/

在一开始的质量控制QC步骤中,The percentage of reads that map to the mitochondrial genome 是一项QC标准,因为Low-quality / dying cells often exhibit extensive mitochondrial contamination

所以我们要挑出 MT genome,以下是官方给出的代码和小提琴图。

library(Seurat)
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
官网 VlnPlot.png

我照着它做,结果MT都是0。

data.object[["percent.mt"]] <- PercentageFeatureSet(data.object, pattern = "^MT-")
VlnPlot(data.object, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
Warning message:
In SingleExIPlot(type = type, data = data[, x, drop = FALSE], idents = idents,  :
  All cells have the same value of percent.mt.
wrong.png

仔细找了问题后,发现是annotation不统一,我的genome不是以‘MT-’开头的,修改后成功画出类似官网的图。

data.object[["percent.mt"]] <- PercentageFeatureSet(data.object, pattern = "^MT")
VlnPlot(data.object, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
2.png
上一篇下一篇

猜你喜欢

热点阅读