LeetCode #1012 Numbers With Repe
1012 Numbers With Repeated Digits 至少有 1 位重复的数字
Description:
Given an integer n, return the number of positive integers in the range [1, n] that have at least one repeated digit.
Example:
Example 1:
Input: n = 20
Output: 1
Explanation: The only positive number (<= 20) with at least 1 repeated digit is 11.
Example 2:
Input: n = 100
Output: 10
Explanation: The positive numbers (<= 100) with atleast 1 repeated digit are 11, 22, 33, 44, 55, 66, 77, 88, 99, and 100.
Example 3:
Input: n = 1000
Output: 262
Constraints:
1 <= n <= 10^9
题目描述:
给定正整数 n,返回在 [1, n] 范围内具有 至少 1 位 重复数字的正整数的个数。
示例 :
示例 1:
输入:n = 20
输出:1
解释:具有至少 1 位重复数字的正数(<= 20)只有 11 。
示例 2:
输入:n = 100
输出:10
解释:具有至少 1 位重复数字的正数(<= 100)有 11,22,33,44,55,66,77,88,99 和 100 。
示例 3:
输入:n = 1000
输出:262
提示:
1 <= n <= 10^9
思路:
数学
以 4869 为例
按照高位是否为 0 分成两种情况
如果高位有 0:
0XXX -> 9 * A(9, 2)
00XX -> 9 * A(9, 1)
000X -> 9 * A(9, 0)
其中 A(m, n) = m! / (m - n)!, 可以预先计算 m! 备用, 注意到最多为 10 位, 计算 10 以内的阶乘就够
如果高位不含 0:
1-3XXX -> 3 * A(9, 3)
4(0-8)XX -> 9 * A(8, 2)
48(0-6)X -> 7 * A(7, 1)
4869 -> 9
注意在这里面需要去掉重复的
时间复杂度为 O(lgn * lgn), 空间复杂度为 O(1)
代码:
C++:
class Solution
{
public:
int numDupDigitsAtMostN(int n)
{
fact = vector<int>(10, 1);
for (int i = 1; i < 10; i++) fact[i] *= fact[i - 1] * i;
return n - helper(n);
}
private:
vector<int> fact;
int helper(int n)
{
string digits = to_string(n);
vector<int> used(10, 0);
int k = digits.size(), total = 0;
for (int i = 1; i < k; i++) total += 9 * A(9, i - 1);
for (int i = k - 1; i >= 0; i--)
{
int num = digits[k - 1 - i] - '0';
for (int j = i == k - 1 ? 1 : 0; j < num; j++)
{
if (used[j] != 0) continue;
total += A(10 - (k - i), i);
}
if (++used[num] > 1) break;
if (!i) ++total;
}
return total;
}
int A(int m, int n)
{
return fact[m] / fact[m - n];
}
};
Java:
class Solution {
private int[] fact;
public int numDupDigitsAtMostN(int n) {
fact = new int[10];
Arrays.fill(fact, 1);
for (int i = 1; i < 10; i++) fact[i] *= fact[i - 1] * i;
return n - helper(n);
}
private int helper(int n) {
List<Integer> digits = new ArrayList<>();
while (n > 0) {
digits.add(n % 10);
n /= 10;
}
int k = digits.size(), total = 0, used[] = new int[10];
for (int i = 1; i < k; i++) total += 9 * A(9, i - 1);
for (int i = k - 1; i >= 0; i--) {
int num = digits.get(i);
for (int j = i == k - 1 ? 1 : 0; j < num; j++) {
if (used[j] != 0) continue;
total += A(10 - (k - i), i);
}
if (++used[num] > 1) break;
if (i == 0) ++total;
}
return total;
}
private int A(int m, int n) {
return fact[m] / fact[m - n];
}
}
Python:
class Solution:
def numDupDigitsAtMostN(self, n: int) -> int:
m, cur, d = len((s := str(n))), 0, {}
for i in range(1, m + 1):
cur += 9 * factorial(9) / factorial(9 - i + 1)
for i in range(m):
a = int(s[i])
for j in range(a + 1, 10):
if j not in d:
cur -= factorial(9 - len(d)) / factorial(9 - len(d) - m + 1 + i)
if a in d:
break
d[a] = 1
return int(n - cur)