生物信息学R语言源码单细胞转录组视...TCGA数据挖掘

单细胞转录组学习笔记-21-基因在任意癌症表达量相关性

2019-09-15  本文已影响0人  刘小泽

刘小泽写于19.9.6-第四单元第一讲:计算基因在任意癌症表达量相关性
笔记目的:根据生信技能树的单细胞转录组课程探索smart-seq2技术相关的分析技术
课程链接在:http://jm.grazy.cn/index/mulitcourse/detail.html?cid=53

从题目可以看到,这次的主角有两个:基因癌症中的表达量

针对第一个:我们要知道有哪些基因

从这个表中复制基因名,然后放到R中,但要注意它们中间是,分隔,因此要使用str_split 拆分成单独的字符串:

library(stringr)
vCAF='Esam, Gng11, Higd1b, Cox4i2, Cygb, Gja4, Eng'
vCAF=unlist(str_split(vCAF,', ')) # 或者直接使用 as.character(str_split(vCAF, ', '))
mCAF='Dcn, Col12a1, Mmp2, Lum, Mrc2, Bicc1, Lrrc15, Mfap5, Col3A1, Mmp14, Spon1, Pdgfrl, Serpinf1, Lrp1, Gfpt2, Ctsk, Cdh11, Itgbl1, Col6a2, Postn, Ccdc80, Lox, Vcan, Col1a1, Fbn1, Col1a2, Pdpn, Col6a1, Fstl1, Col5a2, Aebp1'
mCAF=unlist(str_split(mCAF,', '))

> vCAF
[1] "Esam"   "Gng11"  "Higd1b" "Cox4i2" "Cygb"   "Gja4"   "Eng"   
> head(mCAF)
[1] "Dcn"     "Col12a1" "Mmp2"    "Lum"     "Mrc2"    "Bicc1"  

看到基因名的开头大写,其余小写,就说明是小鼠的基因名

针对第二个:如何获取癌症基因表达量信息

文章对四种癌症进行了讨论:breast cancer, pancreatic ductal adenocarcinoma, lung adenocarcinoma, and renal clear cell carcinoma

目的就是分别画这样一张图:

分析这张图片:这是一个相关性图,如果要做相关性的图,就要有数值型的数据,那么就是基因表达量了。我们现在有了基因名,缺的就是一个表达矩阵。因此如何获取表达矩阵就是最大的一个问题了

首先下载乳腺癌的表达矩阵

网址:https://xenabrowser.net/datapages/

但是如果从这里直接搜索BRCA的话,会有两个结果(这里选择GDC的表达矩阵):

点击下图链接开始下载:文件大小133M

然后读入乳腺癌的表达矩阵

使用fread函数

library(data.table)
filepath <- file.choose()# 然后会弹出来一个对话框,找到自己下载的TCGA-BRCA.htseq_counts.tsv.gz,点OK,然后这个文件的路径就保存在了filepath
a=fread(filepath ,data.table=F)
dim(a)
# [1] 60488  1218
a[1:4,1:4]
# Ensembl_ID TCGA-E9-A1NI-01A TCGA-A1-A0SP-01A TCGA-BH-A201-01A
# 1 ENSG00000000003.13         8.787903        12.064743        11.801304
# 2  ENSG00000000005.5         0.000000         2.807355         4.954196
# 3 ENSG00000000419.11        11.054604        11.292897        11.314017
# 4 ENSG00000000457.12        10.246741         9.905387        11.117643

接着进行ID转换,Ensembl =》 Symbol ID

需要用到人类的物种注释包:org.Hs.eg.db

library(org.Hs.eg.db)
# 先看看包的简介
> org.Hs.eg.db
OrgDb object:
| DBSCHEMAVERSION: 2.1
| Db type: OrgDb
| Supporting package: AnnotationDbi
| DBSCHEMA: HUMAN_DB
| ORGANISM: Homo sapiens
| SPECIES: Human
| EGSOURCEDATE: 2019-Apr26
| EGSOURCENAME: Entrez Gene
| EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
...
# 再看看这个注释包里有什么信息
> head(ls("package:org.Hs.eg.db"))
[1] "org.Hs.eg"          "org.Hs.eg.db"       "org.Hs.egACCNUM"    "org.Hs.egACCNUM2EG" "org.Hs.egALIAS2EG" 
[6] "org.Hs.egCHR"  
# 然后看看其中Ensembl的基因是什么样子
> head(toTable(org.Hs.egENSEMBL))
  gene_id      ensembl_id
1       1 ENSG00000121410
2       2 ENSG00000175899
3       3 ENSG00000256069
4       9 ENSG00000171428
5      10 ENSG00000156006
6      12 ENSG00000196136

发现相对于我们得到TCGA的Emsemble ID,它没有小数点后面的部分,因此我们也需要切割Ensembl ID =>str_split()

library(stringr)
esid=str_split(a$Ensembl_ID,
                 '[.]',simplify = T)[,1]
> head(esid)
[1] "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" "ENSG00000000938"
rownames(a)=esid
开始进行ID转换 => select()或bitr()

这里二者结果一样

# 第一种方式:官方函数
e2s=select(org.Hs.eg.db,keys = esid,columns = c( "ENSEMBL" ,  "SYMBOL" ),keytype = 'ENSEMBL')
dim(e2s) 
# [1] 60686     2
#其中很大一部分的Ensemble ID是没有Symbol对应的。如果出去symbol为NA的值:最后也就剩下25591个基因
nrow(e2s)-sum(is.na(e2s$SYMBOL))
# [1] 25591

# 第二种方式:R包函数
library(clusterProfiler) 
gene_tr <- bitr(esid, fromType = "ENSEMBL",
                                  toType = "SYMBOL",
                                  OrgDb = org.Hs.eg.db)
 nrow(gene_tr)
# 25591  

identical(e2s$SYMBOL[!is.na(e2s$SYMBOL)],gene_tr$SYMBOL)
# [1] TRUE

这样我们就同时拥有了Ensembl ID和Symbol ID:在TCGA矩阵中获取表达量用Emsembl ID,可视化用Symbol ID

# 小鼠基因变大写,然后挑出来存在于e2s的基因
vCAF=toupper(vCAF);vCAF=vCAF[vCAF %in% e2s$SYMBOL]
mCAF=toupper(mCAF);mCAF=mCAF[mCAF %in% e2s$SYMBOL]
# 得到匹配基因的Ensembl ID(总共38个基因),准备去获取表达量
ng=e2s[match(c(vCAF,mCAF),e2s$SYMBOL),1]
mat=a[ng,]
mat=mat[,-1]

dim(mat)
# [1]   38 1217
> mat[1:4,1:4] 
                TCGA-E9-A1NI-01A TCGA-A1-A0SP-01A TCGA-BH-A201-01A TCGA-E2-A14T-01A
ENSG00000149564        10.279611        10.059344        10.907642        10.458407
ENSG00000127920         9.776433         9.726218        10.948367        10.496854
ENSG00000131097         5.614710         4.857981         5.930737         6.658211
ENSG00000131055         6.022368         6.129283         6.629357         6.475733

最后就是计算相关性,准备绘制热图

计算相关性就是利用cor()函数,但是有个问题,它是对行处理还是对列处理?

# 都不用去搜索,自己随便测试一下就能出来结果(新建一个矩阵,然后对它进行默认的相关性分析)
> matrix(1:10,nrow = 2)
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10
> cor(matrix(1:10,nrow = 2))
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    1    1    1    1    1
[3,]    1    1    1    1    1
[4,]    1    1    1    1    1
[5,]    1    1    1    1    1
# 很明显,这是对列进行处理

因此,我们如果想看基因之间的相关性,就将上面的mat矩阵转置一下就可以:

M=cor(t(mat))
colnames(M)=c(vCAF,mCAF)
rownames(M)=c(vCAF,mCAF)
# 然后为了避免高表达量对许多低表达量的遮盖,我们进行一个标准化处理
n=t(scale(t( M )))
n[n>2]=2
n[n< -2]= -2
pheatmap::pheatmap(n,cluster_rows = F,cluster_cols = F)
典型的相关性热图

补充

在Xena数据库搜索pancreatic 会有5个数据集:

在Xena数据库搜索lung adenocarcinoma 会有3个数据集:

上一篇下一篇

猜你喜欢

热点阅读