Udemy ML 随笔 *

2018-03-29  本文已影响0人  浅秋余声

Part 1 - Data Preprocessing
Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
Part 4 - Clustering: K-Means, Hierarchical Clustering
Part 5 - Association Rule Learning: Apriori, Eclat
Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost

上一篇 下一篇

猜你喜欢

热点阅读