大数据平台建设

ETL工具--datax

2019-10-17  本文已影响0人  slientopen

datax是什么

比对 ETL datax 功能
数据抽取 Extract Reader-plugin 从数据源读取数据,传输到framework
转换 transport Framework 对数据进行转换、清洗、并发、流量控制
数据写入 load Writer-Plugin 从framework读取数据,写入目标数据源

为什么选择datax

任务启动时刻                    : 2019-09-17 10:44:56
任务结束时刻                    : 2019-09-17 10:45:18
任务总计耗时                    :                 22s
任务平均流量                    :          492.72KB/s
记录写入速度                    :           8594rec/s
读出记录总数                    :              171895
读写失败总数                    :                   0

datax的运行机制

image.png

如何使用datax

$ python datax.py {YOUR_JOB.json}
{
#全局配置
    "core":{
        "transport":{
            "channel":{
                "speed":{
                    "channel": 2, #job任务通道数,控制并发的线程数
                    "record":-1, #限制数据传输的记录数
                    "byte":-1, #限制数据传输的流量大小
                    "batchSize":2048 #限制批量读取的size
                }
            }
        }
    },
#任务配置
    "job": {
        "content": [
            {
                  "reader": {
                    "name": "",#插件名称
                    
                    "parameter": {
                        "connection": [#连接信息
                            {
                                "jdbcUrl": [""],
                                "querySql": [
                                    ""
                                ],
                                "table": [""]
                            }
                        ],
                         "column": [],
                         "splitPk":"",#分片键,
                         "where":"",#查询限制条件
                        "password": "",
                        "username": "",
                    }
                },
                "writer": {
                    "name": "",
                    "parameter": {
                           "column": [],
                           "connection": [
                            {
                                
                                "jdbcUrl": "",
                                "table": [""]
                            }
                        ],
                        
                        "password": "",
                        "username": ""
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel":5,
                "record":1000,
            }, 
        "errorLimit": {#脏数据阈值配置
                "record":2,
                "percentage": 0.02
            }
        }
    }
}

datax的性能调优

datax性能影响因素

案例分析

问题:数据库A的t_a表数据(275w数据量)同步到数据库B的t_b表,迁移逻辑:
image.png

表结构如下:

CREATE TABLE `t_a` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `phone` varchar(11) NOT NULL,
  `nick_name` varchar(45) DEFAULT NULL,
  `user_name` varchar(45) DEFAULT NULL,
  `sex` tinyint(2) DEFAULT NULL,
  `age` int(4) DEFAULT NULL,
  `created_user` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL,
  `created_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `modified_user` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL,
  `modified_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

CREATE TABLE `t_b` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `mobile` varchar(11) NOT NULL,
  `nick_name` varchar(45) DEFAULT NULL,
  `user_name` varchar(45) DEFAULT NULL,
  `sex` tinyint(2) DEFAULT NULL,
  `age` int(4) DEFAULT NULL,
  `created_user` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL,
  `created_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
  `modified_user` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL,
  `modified_date` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
实现方案

{
    "job": {
        "content": [
            {
                  "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": ["A"],
                                "querySql": [
                                    "SELECT id,phone,nick_name,user_name,sex,age,created_user,created_date,modified_user,modified_date from t_a"
                                ]
                            }
                        ],
                        "password": "",
                        "username": ""
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                           "column": ["id","mobile","nick_name","user_name","sex","age","created_user","created_date","modified_user","modified_date"],
                           "connection": [
                            {
                                
                                "jdbcUrl": "B",
                                "table": ["t_b"]
                            }
                        ],
                        "password": "",
                        "username": ""
                    }
                }
            }
        ]
    }
}
任务启动时刻                    : 2019-09-18 14:38:12
任务结束时刻                    : 2019-09-18 14:41:53
任务总计耗时                    :                221s
任务平均流量                    :          251.45KB/s
记录写入速度                    :          12501rec/s
读出记录总数                    :             2750323
读写失败总数                    :                   0

{
    "job": {
        "content": [
            {
                  "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": ["id","mobile","nickname","username","gender","20 as age"],
                        "connection": [
                            {
                                "jdbcUrl": [""],
                                "table": ["tmp_member_all"]
                            }
                        ],
                        "splitPk":"id",
                        "password": "",
                        "username": ""
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                           "column": ["id","phone","nick_name","user_name","sex","age"],
                           "connection": [
                            {
                                
                                "jdbcUrl": "A",
                                "table": ["t_b"]
                            }
                        ],
                        "password": "",
                        "username": ""
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel":5
            }
        }
    }
}

任务执行的总体情况

任务启动时刻                    : 2019-09-18 15:02:58
任务结束时刻                    : 2019-09-18 15:03:59
任务总计耗时                    :                 61s
任务平均流量                    :          921.97KB/s
记录写入速度                    :          45838rec/s
读出记录总数                    :             2750323
读写失败总数                    :                   0
上一篇 下一篇

猜你喜欢

热点阅读