PAT 1018 Public Bike Management

2018-05-08  本文已影响0人  烤肉拌饭多加饭

题目理解错了就很难受。
送回中心(back>=0)和送出中心(need<=0)两个都要计算
按下图理解


need=2,back=3

按我写的那就是back=1;need=0。
这样对于权重为0的那个点,上面给他3,目标节点p(权重w=8)给它2,然后返回center 1个。也就是对于目标节点p实际上有两个操作,送出和送回;题意应该是目标节点p只有一个操作的(送出或者送回)
看到还有一个解释:实际测试是只能在去往目的地的途中调整,回来的途上不可调整。
然后改了代码如下:

/*1018 Public Bike Management*/
#include<iostream>
#include<climits>
#include<vector>
#include<iterator>
using namespace std;

const int N = 510;
int c,n,p, e;//最大容量c,停车点数量n,有问题停车点下标p,路的数量
int perfect;
int *Cap;//现在停车点i的车数
int num[N] = { 0 };//记录到i有几条最短路径
int **G;//停车点图
vector<int> pre[N];//节点i的前驱节点数组
vector<int> Path, tmpPath;
int *d = new int[N];
int MinNeed = N*100,MinBack=N*100;


void Dijkstra() {
    int stationN = n + 1;
    int *visit = new int[stationN];
    for (int i = 0; i < stationN; i++) {
        d[i] = INT_MAX;
        visit[i] = 0;
    }
    d[0] = 0;//0永远是起始点
    num[0] = 1;//其余路径数还是0
    int control = 0;
    while (control < stationN) {
        int u = -1;
        int min = INT_MAX;
        //找到未访问过且d[u]最小的顶点
        for (int i = 0; i < n; i++) {
            if (!visit[i] && d[i] < min) {
                min = d[i];
                u = i;
            }
        }
        if(u == -1)return;
        visit[u] = 1;//标记访问过
        for (int j = 0; j < stationN; j++) {//从u出发
            if (G[u][j] != 0 && !visit[j]) {//有路
                if ( d[j] > d[u] + G[u][j]) {
                    num[j] = num[u];
                    d[j] = d[u] + G[u][j];
                    pre[j].clear();
                    pre[j].push_back(u);
                }
                else if (d[j] == d[u] + G[u][j]) {
                    pre[j].push_back(u);
                    num[j] = num[j] + num[u];
                }
            }
        }
        control++;
    }
    
}
void DFS(int v) {//DFS输出minBikes最小的路线
    if (v == 0) {//到达中心站
        int need = 0,back=0;
        tmpPath.push_back(v);
        //比较
        int sizeNum = tmpPath.size();//center下标为u=sizeNum-1,tmpPath[u]=0;
        for (int i=sizeNum-2;i>=0; i--) {
            int tmp= Cap[tmpPath[i]] - perfect;//>0送回,<0 need
            if (tmp > 0) {//i要送出去tmp辆车
                back += tmp;
            }
            else {
                //tmp<0,i需要-tmp辆车
                if (back > abs(tmp)) {
                    back += tmp;
                }
                else {
                    need = need + abs(tmp)-back;
                    back = 0;
                }
            }
        }
        if (MinNeed > need) {
            MinNeed = need;
            MinBack = back;
            Path.clear();
            for (int i = 0; i < tmpPath.size(); i++) {
                Path.push_back(tmpPath[i]);
            }
        }
        else if (MinNeed == need && MinBack > back) {
            MinBack = back;
            Path.clear();
            for (int i = 0; i < tmpPath.size(); i++) {
                Path.push_back(tmpPath[i]);
            }
        }
        tmpPath.pop_back();
        return;
    }
    else {
        tmpPath.push_back(v);
        for (int i = 0; i <pre[v].size(); i++) {
            DFS(pre[v][i]);
        }
        tmpPath.pop_back();
    }
}

int main()
{
    
    cin >> c >> n>> p >> e;
    perfect = c / 2;
    G = (int **)new int*[n+1];//0 center n parking dot
    for (int i = 0; i < n+1; i++) {//初始化图G,有n个城市(顶点)
        G[i] = new int[n+1];
        for (int j = 0; j < n+1; j++) {
            G[i][j] = 0;//表示没路
        }
    }
    Cap = new int[n+1];
    Cap[0] = 0;
    for (int i = 1; i < n + 1; i++) {
        cin >> Cap[i];
    }
    int x, y, t;
    for (int i = 0; i < e; i++) {//初始化路径和消耗权重
        cin >> x >> y >> t;
        G[x][y] = t;
        G[y][x] = t;
    
    }
    Dijkstra();
    DFS(p);
    
    cout << MinNeed << " "<<0;
    for (int i = Path.size()-2; i>=0; i--) {
        cout << "->" << Path[i];
    }
    cout <<" "<<MinBack;
    return 0;
}
上一篇下一篇

猜你喜欢

热点阅读