iOS多线程的锁,你知道多少?

2020-12-14  本文已影响0人  iOS__开发者皮皮峰

前言

iOS开发中由于各种第三方库的高度封装,对锁的使用很少,刚好之前面试中被问到的关于并发编程锁的问题,都是一知半解,于是决定整理一下关于iOS中锁的知识,为大家查缺补漏。

目录

第一部分: 什么是锁

第二部分: 锁的分类

第三部分: 性能对比

第四部分: 常见的死锁

第五部分: 总结(附Demo)

正文

一、什么是锁

在过去几十年并发研究领域的出版物中,锁总是扮演着坏人的角色,锁背负的指控包括引起死锁、锁封护(luyang注:lock convoying,多个同优先级的线程重复竞争同一把锁,此时大量虽然被唤醒而得不到锁的线程被迫进行调度切换,这种频繁的调度切换相当影响系统性能)、饥饿、不公平、data races以及其他许多并发带来的罪孽。有趣的是,在共享内存并行软件中真正承担重担的是——你猜对了——锁。

在计算机科学中,锁是一种同步机制,用于多线程环境中对资源访问的限制。你可以理解成它用于排除并发的一种策略。

    if (lock == 0) {
        lock = myPID;
    }复制代码

上面这段代码并不能保证这个任务有锁,因此它可以在同一时间被多个任务执行。这个时候就有可能多个任务都检测到lock是空闲的,因此两个或者多个任务都将尝试设置lock,而不知道其他的任务也在尝试设置lock。这个时候就会出问题了。再看看下面这段代码(Swift):

    class Account {
    private(set) var val: Int = 0 //这里不可在其他方法修改,只能通过add/minus修改
    public func add(x: Int) {
        objc_sync_enter(self)
        defer {
            objc_sync_exit(self)
        }
        val += x
    }

    public func minus(x: Int) {
        objc_sync_enter(self)
        defer {
            objc_sync_exit(self)
        }
        val -= x;
    }
}复制代码

这样就能防止多个任务去修改val了。

二、锁的分类

锁根据不同的性质可以分成不同的类。

在WiKiPedia介绍中,一般的锁都是建议锁,也就四每个任务去访问公共资源的时候,都需要取得锁的资讯,再根据锁资讯来确定是否可以存取。若存取对应资讯,锁的状态会改变为锁定,因此其他线程不会访问该资源,当结束访问时,锁会释放,允许其他任务访问。有些系统有强制锁,若未经授权的锁访问锁定的资料,在访问时就会产生异常。

在iOS中,锁分为互斥锁、递归锁、信号量、条件锁、自旋锁、读写锁(一种特所的自旋锁)、分布式锁。

对于数据库的锁分类:

分类方式 分类
按锁的粒度划分 表级锁、行级锁、页级锁
按锁的级别划分 共享锁、排他锁
按加锁的方式划分 自动锁、显示锁
按锁的使用方式划分 乐观锁、悲观锁
按操作划分 DML锁、DDL锁

这里就不再详细的介绍了,感兴趣的大家可以带Wiki
查阅相关资料

1、互斥锁

在编程中,引入对象互斥锁的概念,来保证共享数据操作的完整性。每个对象都对应于一个可称为“互斥锁”的标记,这个标记用来保证在任一时刻,只能有一个线程访问对象。

1.1 @synchronized

// 用在防止多线程访问属性上比较多
- (void)setTestInt:(NSInteger)testInt {
    @synchronized (self) {
        _testInt = testInt;
    }
}复制代码

1.2 NSLock

// 定义block类型
typedef void(^MMBlock)(void);

// 定义获取全局队列方法
#define MM_GLOBAL_QUEUE(block) \
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{ \
    while (1) { \
        block();\
    }\
})复制代码

NSLock *lock = [[NSLock alloc] init];
MMBlock block = ^{
    [lock lock];
    NSLog(@"执行操作");
    sleep(1);
    [lock unlock];
};
MM_GLOBAL_QUEUE(block);复制代码

1.3 pthread

pthread除了创建互斥锁,还可以创建递归锁、读写锁、once等锁。稍后会介绍一下如何使用。如果想要深入学习pthread请查阅相关文档、资料单独学习。

#import <pthread.h>

//YYKit
static inline void pthread_mutex_init_recursive(pthread_mutex_t *mutex, bool recursive) {
#define YYMUTEX_ASSERT_ON_ERROR(x_) do { \
__unused volatile int res = (x_); \
assert(res == 0); \
} while (0)
    assert(mutex != NULL);
    if (!recursive) {
        //普通锁
        YYMUTEX_ASSERT_ON_ERROR(pthread_mutex_init(mutex, NULL));
    } else {
        //递归锁
        pthread_mutexattr_t attr;
        YYMUTEX_ASSERT_ON_ERROR(pthread_mutexattr_init (&attr));
        YYMUTEX_ASSERT_ON_ERROR(pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE));
        YYMUTEX_ASSERT_ON_ERROR(pthread_mutex_init (mutex, &attr));
        YYMUTEX_ASSERT_ON_ERROR(pthread_mutexattr_destroy (&attr));
    }
#undef YYMUTEX_ASSERT_ON_ERROR
}复制代码

__block pthread_mutex_t lock;
    pthread_mutex_init_recursive(&lock,false);

    MMBlock block0=^{
        NSLog(@"线程 0:加锁");
        pthread_mutex_lock(&lock);
        NSLog(@"线程 0:睡眠 1 秒");
        sleep(1);
        pthread_mutex_unlock(&lock);
        NSLog(@"线程 0:解锁");
    };
    MM_GLOBAL_QUEUE(block0);

    MMBlock block1=^(){
        NSLog(@"线程 1:加锁");
        pthread_mutex_lock(&lock);
        NSLog(@"线程 1:睡眠 2 秒");
        sleep(2);
        pthread_mutex_unlock(&lock);
        NSLog(@"线程 1:解锁");
    };
    MM_GLOBAL_QUEUE(block1);

    MMBlock block2=^{
        NSLog(@"线程 2:加锁");
        pthread_mutex_lock(&lock);
        NSLog(@"线程 2:睡眠 3 秒");
        sleep(3);
        pthread_mutex_unlock(&lock);
        NSLog(@"线程 2:解锁");
    };
    MM_GLOBAL_QUEUE(block2);复制代码

 线程 2:加锁
 线程 0:加锁
 线程 1:加锁
 线程 2:睡眠 3 秒复制代码

 线程 2:加锁
 线程 0:加锁
 线程 1:加锁
 线程 2:睡眠 3 秒
 线程 2:解锁
 线程 0:睡眠 1 秒
 线程 2:加锁复制代码

 线程 2:加锁
 线程 0:加锁
 线程 1:加锁
 线程 2:睡眠 3 秒
 线程 2:解锁
 线程 0:睡眠 1 秒
 线程 2:加锁
 线程 0:解锁
 线程 1:睡眠 2 秒
 线程 0:加锁复制代码

2、递归锁

同一个线程可以多次加锁,不会造成死锁

举个🌰:

NSLock *lock = [[NSLock alloc] init];

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

    static void (^RecursiveMethod)(int);

    RecursiveMethod = ^(int value) {

        [lock lock];
        if (value > 0) {

            NSLog(@"value = %d", value);
            sleep(2);
            RecursiveMethod(value - 1);
        }
        [lock unlock];
    };

    RecursiveMethod(5);
});复制代码

这段代码是一个典型的死锁情况。在我们的线程中,RecursiveMethod是递归调用的。所有每次进入这个block时,都会去加一次锁,而从第二次开始,由于锁已经被使用了且没有解锁,所有它需要等待锁被解除,这样就导致了死锁,线程被阻塞住了。控制台会输出如下信息:

value = 5
*** -[NSLock lock]: deadlock ( '(null)')   *** Break on _NSLockError() to debug.复制代码

2.1 NSRecursiveLock

NSRecursiveLock *lock = [[NSRecursiveLock alloc] init];
    MM_GLOBAL_QUEUE(^{
        static void (^RecursiveBlock)(int);
        RecursiveBlock = ^(int value) {
            [lock lock];
            if (value > 0) {
                NSLog(@"加锁层数 %d", value);
                sleep(1);
                RecursiveBlock(--value);
            }
            [lock unlock];
        };
        RecursiveBlock(3);
    });复制代码

加锁层数 3
加锁层数 2
加锁层数 1
加锁层数 3
加锁层数 2
加锁层数 1
加锁层数 3
加锁层数 2复制代码

2.2 pthread

__block pthread_mutex_t lock;
    //第二个参数为true生成递归锁
    pthread_mutex_init_recursive(&lock,true);

    MM_GLOBAL_QUEUE(^{
        static void (^RecursiveBlock)(int);
        RecursiveBlock = ^(int value) {
            pthread_mutex_lock(&lock);
            if (value > 0) {
                NSLog(@"加锁层数 %d", value);
                sleep(1);
                RecursiveBlock(--value);
            }
            pthread_mutex_unlock(&lock);
        };
        RecursiveBlock(3);
    });复制代码

加锁层数 3
加锁层数 2
加锁层数 1
加锁层数 3
加锁层数 2
加锁层数 1
加锁层数 3
加锁层数 2复制代码

3、信号量

信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放信号量。其它想进入该关键代码段的线程必须等待直到第一个线程释放信号量

3.1 dispatch_semaphore_t

// 参数可以理解为信号的总量,传入的值必须大于或等于0,否则,返回NULL
// dispatch_semaphore_signal + 1
// dispatch_semaphore_wait等待信号,当 <= 0会进入等待状态
__block dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
MM_GLOBAL_QUEUE(^{
        dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
        NSLog(@"这里简单写一下用法,可自行实现生产者、消费者");
        sleep(1);
        dispatch_semaphore_signal(semaphore);
    });复制代码

3.2 pthread

__block pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;
    __block pthread_cond_t cond=PTHREAD_COND_INITIALIZER;

    MM_GLOBAL_QUEUE(^{
        //NSLog(@"线程 0:加锁");
        pthread_mutex_lock(&mutex);
        pthread_cond_wait(&cond, &mutex);
        NSLog(@"线程 0:wait");
        pthread_mutex_unlock(&mutex);
        //NSLog(@"线程 0:解锁");
    });

    MM_GLOBAL_QUEUE(^{
        //NSLog(@"线程 1:加锁");
        sleep(3);//3秒发一次信号
        pthread_mutex_lock(&mutex);
        NSLog(@"线程 1:signal");
        pthread_cond_signal(&cond);
        pthread_mutex_unlock(&mutex);
        //NSLog(@"线程 1:加锁");
    });复制代码

4、条件锁

3.1 NSCodition

NSCondition 的对象实际上作为一个锁和一个线程检查器:锁主要为了当检测条件时保护数据源,执行条件引发的任务;线程检查器主要是根据条件决定是否继续运行线程,即线程是否被阻塞。

- (void)getIamgeName:(NSMutableArray *)imageNames{
      NSCondition *lock = [[NSCondition alloc] init];
    NSString *imageName;
    [lock lock];
    if (imageNames.count>0) {
        imageName = [imageNames lastObject];
        [imageNames removeObject:imageName];
    }
    [lock unlock];
}复制代码

- (void)executeNSCondition {
    NSCondition* lock = [[NSCondition alloc] init];

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        for (NSUInteger i=0; i<3; i++) {
            sleep(2);
            if (i == 2) {
                [lock lock];
                [lock broadcast];
                [lock unlock];
            }

        }
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCodition:lock];
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCodition:lock];
    });

}

-(void)threadMethodOfNSCodition:(NSCondition*)lock{
    [lock lock];
    [lock wait];
    [lock unlock];

}复制代码

3.2 NSCoditionLock

- (void)executeNSConditionLock {
    NSConditionLock* lock = [[NSConditionLock alloc] init];

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        for (NSUInteger i=0; i<3; i++) {
            sleep(2);
            if (i == 2) {
                [lock lock];
                [lock unlockWithCondition:i];
            }

        }
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCoditionLock:lock];
    });

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        [self threadMethodOfNSCoditionLock:lock];
    });

}

-(void)threadMethodOfNSCoditionLock:(NSConditionLock*)lock{
    [lock lockWhenCondition:2];
    [lock unlock];

}复制代码

3.3 POSIX Conditions

pthread_mutex_t mutex;
pthread_cond_t condition;
Boolean     ready_to_go = true;
void MyCondInitFunction()
{
    pthread_mutex_init(&mutex, NULL);
    pthread_cond_init(&condition, NULL);
}
void MyWaitOnConditionFunction()
{
    // Lock the mutex.
    pthread_mutex_lock(&mutex);
    // If the predicate is already set, then the while loop is bypassed;
    // otherwise, the thread sleeps until the predicate is set.
    while(ready_to_go == false)
    {
        pthread_cond_wait(&condition, &mutex);
    }
    // Do work. (The mutex should stay locked.)
    // Reset the predicate and release the mutex.
    ready_to_go = false;
    pthread_mutex_unlock(&mutex);
}
void SignalThreadUsingCondition()
{
    // At this point, there should be work for the other thread to do.
    pthread_mutex_lock(&mutex);
    ready_to_go = true;
    // Signal the other thread to begin work.
    pthread_cond_signal(&condition);
    pthread_mutex_unlock(&mutex);
}复制代码

5、分布式锁

分布式锁是控制分布式系统之间同步访问共享资源的一种方式。在分布式系统中,常常需要协调他们的动作。如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁。

5.1 NSDistributedLock

6、读写锁

读写锁实际是一种特殊的自旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源进行读访问,写者则需要对共享资源进行写操作。这种锁相对于自旋锁而言,能提高并发性,因为在多处理器系统中,它允许同时有多个读者来访问共享资源,最大可能的读者数为实际的逻辑CPU数。写者是排他性的,一个读写锁同时只能有一个写者或多个读者(与CPU数相关),但不能同时既有读者又有写者。

6.1 dispatch_barrier_async / dispatch_barrier_sync🌰

image.png
- (void)rwLockOfBarrier {
    dispatch_queue_t queue = dispatch_queue_create("thread", DISPATCH_QUEUE_CONCURRENT);

    dispatch_async(queue, ^{
        NSLog(@"test1");
    });
    dispatch_async(queue, ^{
        NSLog(@"test2");
    });
    dispatch_async(queue, ^{
        NSLog(@"test3");
    });
    dispatch_barrier_sync(queue, ^{
        for (int i = 0; i <= 500000000; i++) {
            if (5000 == i) {
                NSLog(@"point1");
            }else if (6000 == i) {
                NSLog(@"point2");
            }else if (7000 == i) {
                NSLog(@"point3");
            }
        }
        NSLog(@"barrier");
    });
    NSLog(@"aaa");
    dispatch_async(queue, ^{
        NSLog(@"test4");
    });
    dispatch_async(queue, ^{
        NSLog(@"test5");
    });
    dispatch_async(queue, ^{
        NSLog(@"test6");
    });
}复制代码

6.2 pthread

#import <pthread.h>

    __block pthread_rwlock_t rwlock;
    pthread_rwlock_init(&rwlock,NULL);

    //读
    MM_GLOBAL_QUEUE(^{
        //NSLog(@"线程0:随眠 1 秒");//还是不打印能直观些
        sleep(1);
        NSLog(@"线程0:加锁");
        pthread_rwlock_rdlock(&rwlock);
        NSLog(@"线程0:读");
        pthread_rwlock_unlock(&rwlock);
        NSLog(@"线程0:解锁");
    });
    //写
    MM_GLOBAL_QUEUE(^{
        //NSLog(@"线程1:随眠 3 秒");
        sleep(3);
        NSLog(@"线程1:加锁");
        pthread_rwlock_wrlock(&rwlock);
        NSLog(@"线程1:写");
        pthread_rwlock_unlock(&rwlock);
        NSLog(@"线程1:解锁");
    });复制代码

7、自旋锁

何谓自旋锁?它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名。

7.1 OSSpinLock

// 初始化
spinLock = OS_SPINKLOCK_INIT;
// 加锁
OSSpinLockLock(&spinLock);
// 解锁
OSSpinLockUnlock(&spinLock);复制代码

然而,YYKit作者的文章不再安全的 OSSpinLock有说到这个自旋锁存在优先级反转的问题。

7.2 os_unfair_lock

    os_unfair_lock_t unfairLock;
    unfairLock = &(OS_UNFAIR_LOCK_INIT);
    os_unfair_lock_lock(unfairLock);
    os_unfair_lock_unlock(unfairLock);复制代码

8、atomic(property) set / get

利用set / get 接口的属性实现原子操作,进而确保“被共享”的变量在多线程中读写安全,这已经是不能满足部分多线程同步要求。

raw3d

Atomic

Non-Atomic

Vijayendra Tripathi

9、ONCE

9.1 GCD

+ (instancetype) sharedInstance {
    static id __instance = nil;
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        __instance = [[self alloc] init];
    });
    return __instance;
}复制代码

9.2 pthread

// 定义方法
void fun() {
    NSLog(@"%@", [NSThread currentThread]);
}

- (void)onceOfPthread {
    __block pthread_once_t once = PTHREAD_ONCE_INIT;

    int i= 0;
    while (i > 5) {
        pthread_once(&once, fun);
        i++;
    }

}复制代码

三、性能对比

基础表现-所操作耗时

image.png

上图是常规的锁操作性能测试(iOS7.0SDK,iPhone6模拟器,Yosemite 10.10.5),垂直方向表示耗时,单位是秒,总耗时越小越好,水平方向表示不同类型锁的锁操作,具体又分为两部分,左边的常规lock操作(比如NSLock)或者读read操作(比如ANReadWriteLock),右边则是写write操作,图上仅有ANReadWriteLockANRecursiveRWLock支持,其它不支持的则默认为0,图上看出,单从性能表现,原子操作是表现最佳的(0.057412秒),@synchronized则是最耗时的(1.753565秒) (测试代码) 。

多线程锁删除数组性能测试

image.png image.png

声明: 测试结果仅仅代表一个参考,因为各种因素的影响,并没有那么准确。

综合比较

image.png

可以看到除了 OSSpinLock 外,dispatch_semaphorepthread_mutex 性能是最高的。有消息称,苹果在新的系统中已经优化了 pthread_mutex 的性能,所有它看上去和 dispatch_semaphore 差距并没有那么大了。

四、常见的死锁

首先要明确几个概念

1.串行与并行

在使用GCD的时候,我们会把需要处理的任务放到Block中,然后将任务追加到相应的队列里面,这个队列,叫做 Dispatch Queue。然而,存在于两种Dispatch Queue,一种是要等待上一个任务执行完,再执行下一个的Serial Dispatch Queue,这叫做串行队列;另一种,则是不需要上一个任务执行完,就能执行下一个的ConcurrentDispatch Queue,叫做并行队列。这两种,均遵循FIFO原则。

举一个简单的例子,在三个任务中输出1、2、3,串行队列输出是有序的1、2、3,但是并行队列的先后顺序就不一定了。

虽然可以同时多个任务的处理,但是并行队列的处理量,还是要根据当前系统状态来。如果当前系统状态最多处理2个任务,那么1、2会排在前面,3什么时候操作,就看1或者2谁先完成,然后3接在后面。

串行和并行就简单说到这里,关于它们的技术点其实还有很多,可以自行了解。

2.同步与异步

串行与并行针对的是队列,而同步与异步,针对的则是线程。最大的区别在于,同步线程要阻塞当前线程,必须要等待同步线程中的任务执行完,返回以后,才能继续执行下一个任务;而异步线程则是不用等待。

3.GCD API

GCD API很多,这里仅介绍本文用到的。

// 全局队列,也是一个并行队列
dispatch_get_global_queue
// 主队列,在主线程中运行,因为主线程只有一个,所有这是一个串行队列
dispatch_get_main_queue复制代码

// 从DISPATCH_QUQUE_SERIAL看出,这是串行队列
dispatch_queue_create("com.demo.serialQueue", DISPATCH_QUEUE_SERIAL)
// 同理,这是一个并行队列
dispatch_queue_create("com.demo.concurrentQueue", DISPATCH_QUEUE_CONCURRENT)复制代码

dispatch_sync(..., ^(block)) // 同步线程
dispatch_async(..., ^(block)) // 异步线程复制代码

案例分析

案例一
NSLog(@"1"); // 任务1
dispatch_sync(dispatch_get_main_queue(), ^{
    NSLog(@"2"); // 任务2
});
NSLog(@"3"); // 任务3复制代码

1复制代码

分析

首先执行任务1,这是肯定没问题的,只是接下来,程序遇到了同步线程,那么它会进入等待,等待任务2执行完,然后执行任务3。但这是队列,有任务来,当然会将任务加到队尾,然后遵循FIFO原则执行任务。那么,现在任务2就会被加到最后,任务3排在了任务2前面,问题来了:

任务3要等任务2执行完才能执行,任务2由排在任务3后面,意味着任务2要在任务3执行完才能执行,所以他们进入了互相等待的局面。【既然这样,那干脆就卡在这里吧】这就是死锁。

image.png
案例二
NSLog(@"1"); // 任务1
dispatch_sync(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
    NSLog(@"2"); // 任务2
});
NSLog(@"3"); // 任务3复制代码

1
2
3复制代码

分析

首先执行任务1,接下来会遇到一个同步线程,程序会进入等待。等待任务2执行完成以后,才能继续执行任务3。从dispatch_get_global_queue可以看出,任务2被加入到了全局的并行队列中,当并行队列执行完任务2以后,返回到主队列,继续执行任务3。

image.png
案例三
dispatch_queue_t queue = dispatch_queue_create("com.demo.serialQueue", DISPATCH_QUEUE_SERIAL);
NSLog(@"1"); // 任务1
dispatch_async(queue, ^{
    NSLog(@"2"); // 任务2
    dispatch_sync(queue, ^{  
        NSLog(@"3"); // 任务3
    });
    NSLog(@"4"); // 任务4
});
NSLog(@"5"); // 任务5复制代码

1
5
2
// 5和2的顺序不一定复制代码

分析

这个案例没有使用系统提供的串行或并行队列,而是自己通过dispatch_queue_create函数创建了一个DISPATCH_QUEUE_SERIAL的串行队列。

image.png
案例四
NSLog(@"1"); // 任务1
dispatch_async(dispatch_get_global_queue(0, 0), ^{
    NSLog(@"2"); // 任务2
    dispatch_sync(dispatch_get_main_queue(), ^{
        NSLog(@"3"); // 任务3
    });
    NSLog(@"4"); // 任务4
});
NSLog(@"5"); // 任务5复制代码

1
2
5
3
4
// 5和2的顺序不一定复制代码

分析

首先,将【任务1、异步线程、任务5】加入Main Queue中,异步线程中的任务是:【任务2、同步线程、任务4】。

所以,先执行任务1,然后将异步线程中的任务加入到Global Queue中,因为异步线程,所以任务5不用等待,结果就是2和5的输出顺序不一定。

然后再看异步线程中的任务执行顺序。任务2执行完以后,遇到同步线程。将同步线程中的任务加入到Main Queue中,这时加入的任务3在任务5的后面。

当任务3执行完以后,没有了阻塞,程序继续执行任务4。

从以上的分析来看,得到的几个结果:1最先执行;2和5顺序不一定;4一定在3后面。

image.png
案例五
dispatch_async(dispatch_get_global_queue(0, 0), ^{
    NSLog(@"1"); // 任务1
    dispatch_sync(dispatch_get_main_queue(), ^{
        NSLog(@"2"); // 任务2
    });
    NSLog(@"3"); // 任务3
});
NSLog(@"4"); // 任务4
while (1) {
}
NSLog(@"5"); // 任务5复制代码

1
4
// 1和4的顺序不一定复制代码

分析

和上面几个案例的分析类似,先来看看都有哪些任务加入了Main Queue:【异步线程、任务4、死循环、任务5】。

在加入到Global Queue异步线程中的任务有:【任务1、同步线程、任务3】。

第一个就是异步线程,任务4不用等待,所以结果任务1和任务4顺序不一定。

任务4完成后,程序进入死循环,Main Queue阻塞。但是加入到Global Queue的异步线程不受影响,继续执行任务1后面的同步线程。

同步线程中,将任务2加入到了主线程,并且,任务3等待任务2完成以后才能执行。这时的主线程,已经被死循环阻塞了。所以任务2无法执行,当然任务3也无法执行,在死循环后的任务5也不会执行。

最终,只能得到1和4顺序不定的结果。


image.png

五、总结

苹果为多线程、共享内存提供了多种同步解决方案(锁),对于这些方案的比较,大都讨论了锁的用法以及锁操作的开销。个人认为最优秀的选用还是看应用场景,高频接口VS低频接口、有限冲突VS激烈竞争、代码片段耗时的长短,都是选择的重要依据,选择适用于当前应用场景的方案才是王道。

如果有错误或者不足的地方请指正,

作为一个开发者,有一个学习的氛围跟一个交流圈子特别重要,这是我的iOS交流圈:
不管你是小白还是大牛欢迎入驻!!
分享内容包括逆向安防、算法、架构设计、多线程,网络进阶,还有底层、音视频、Flutter等等…
自己根据梳理网络来的的开发经验总结的学习方法,无偿分享给大家。需要的话都可以自行来获取下载。
+裙:196800191、 或者是+ WX(XiAZHiGardenia)
或者是+ WX(XiAZHiGardenia)免费获取! 获取面试资料 简历模板 一起交流技术

作者:喵渣渣
原文链接:https://juejin.cn/post/6844903511147167751

参考文档

关注下面的标签,发现更多相似文章

上一篇下一篇

猜你喜欢

热点阅读