LeetCode #1123 Lowest Common Anc
1123 Lowest Common Ancestor of Deepest Leaves 最深叶节点的最近公共祖先
Description:
Given the root of a binary tree, return the lowest common ancestor of its deepest leaves.
Recall that:
The node of a binary tree is a leaf if and only if it has no children
The depth of the root of the tree is 0. if the depth of a node is d, the depth of each of its children is d + 1.
The lowest common ancestor of a set S of nodes, is the node A with the largest depth such that every node in S is in the subtree with root A.
Example:
Example 1:
[图片上传失败...(image-41d2a4-1650928374413)]
Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in yellow in the diagram.
The nodes coloured in blue are the deepest leaf-nodes of the tree.
Note that nodes 6, 0, and 8 are also leaf nodes, but the depth of them is 2, but the depth of nodes 7 and 4 is 3.
Example 2:
Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree, and it's the lca of itself.
Example 3:
Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest leaf node in the tree is 2, the lca of one node is itself.
Constraints:
The number of nodes in the tree will be in the range [1, 1000].
0 <= Node.val <= 1000
The values of the nodes in the tree are unique.
Note:
This question is the same as 865
题目描述:
给你一个有根节点 root 的二叉树,返回它 最深的叶节点的最近公共祖先 。
回想一下:
叶节点 是二叉树中没有子节点的节点
树的根节点的 深度 为 0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1
如果我们假定 A 是一组节点 S 的 最近公共祖先,S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。
示例 :
示例 1:
[图片上传失败...(image-161aa9-1650928374413)]
输入:root = [3,5,1,6,2,0,8,null,null,7,4]
输出:[2,7,4]
解释:我们返回值为 2 的节点,在图中用黄色标记。
在图中用蓝色标记的是树的最深的节点。
注意,节点 6、0 和 8 也是叶节点,但是它们的深度是 2 ,而节点 7 和 4 的深度是 3 。
示例 2:
输入:root = [1]
输出:[1]
解释:根节点是树中最深的节点,它是它本身的最近公共祖先。
示例 3:
输入:root = [0,1,3,null,2]
输出:[2]
解释:树中最深的叶节点是 2 ,最近公共祖先是它自己。
提示:
树中的节点数将在 [1, 1000] 的范围内。
0 <= Node.val <= 1000
每个节点的值都是 独一无二 的。
注意:
本题与力扣 865 重复
思路:
DFS
这题目也太绕了, 题意是找到一棵树, 这棵树上所有的结点或者子结点包含深度最深的叶子结点
其实就是找到左子树和右子树高度相等的根结点
对每个结点查找高度即可
时间复杂度为 O(n), 空间复杂度为 O(n)
代码:
C++:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
TreeNode* lcaDeepestLeaves(TreeNode* root)
{
if (!root) return root;
int left = depth(root -> left), right = depth(root -> right);
return left > right ? lcaDeepestLeaves(root -> left) : (left < right ? lcaDeepestLeaves(root -> right) : root);
}
private:
int depth(TreeNode* root)
{
return !root ? 0 : max(depth(root -> left), depth(root -> right)) + 1;
}
};
Java:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode lcaDeepestLeaves(TreeNode root) {
if (root == null) return root;
int left = depth(root.left), right = depth(root.right);
return left > right ? lcaDeepestLeaves(root.left) : (left < right ? lcaDeepestLeaves(root.right) : root);
}
private int depth(TreeNode root) {
return root == null ? 0 : Math.max(depth(root.left), depth(root.right)) + 1;
}
}
Python:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def lcaDeepestLeaves(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
def depth(node: TreeNode) -> int:
return 0 if not node else max(depth(node.left), depth(node.right)) + 1
return root if not root or (l := depth(root.left)) == (r := depth(root.right)) else self.lcaDeepestLeaves(root.left) if l > r else self.lcaDeepestLeaves(root.right)