合成控制法 (Synthetic Control Method)

2019-07-29  本文已影响0人  stata连享会

作者:何庆红(北京大学中国卫生经济研究中心)

连享会:(知乎 | 简书 | 码云 | CSDN)

Stata连享会   计量专题 || 精品课程 || 简书推文 || 公众号合集

点击查看完整推文列表

2020寒假Stata现场班 (北京, 1月8-17日,连玉君-江艇主讲),「+助教招聘」

2020寒假Stata现场班

本推文介绍合成控制方法及其 Stata 的实现命令。合成控制方法(Synthetic Control Method)由Abadie and Gardeazabal (2003)提出。目前,该方法已被广泛使用。

1. 背景介绍

经济学家常要评估某政策或事件的效应。此政策可能实施于某国家或地区(省、州或城市)。为此,常使用“鲁宾的反事实框架”(Rubin's counterfactual framework),即假想该地区如未受政策干预将会怎样,并与事实上受到干预的实际数据进行对比,二者之差即为“处理效应”(treatment effect,借用医学术语)。常用解决方法是,寻找适当的控制组(control group),即在各方面都与受干预地区相似却未受干预的其他地区,以作为处理组(treated group,即受到干预的地区)的反事实替身(counterfactuals)。

比如,要考察仅在A市实施的某政策效果,自然会想到以之相近的B市作为控制地区;但B市毕竟与A市不完全相同。或可用其他城市(B市、C市、D市)构成A市的控制组,比较B市、C市、D市与A市在政策实施前后的差别,此方法也称“比较案例研究”(comparative case studies)。但如何选择控制组通常存在主观随意性(ambiguity),而B市、C市、D市与A市的相似度也不尽相同。

为此,Abadie and Gardeazabal (2003)提出“合成控制法”(Synthetic Control Method)。其基本思想是,虽然无法找到A市的最佳控制地区,但通常可对若干大城市进行适当的线性组合,以构造一个更为优秀的“合成控制地区”(synthetic control region),并将“真实A市”与“合成A市”进行对比,故名“合成控制法”。合成控制法的一大优势是,可以根据数据(data-driven)来选择线性组合的最优权重,避免了研究者主观选择控制组的随意性。

连享会计量方法专题……

2. 合成控制法原理

原理介绍请看以下链接:
Stata: 合成控制法程序
合成控制法:一组文献
合成控制法简介及代码

3. 合成控制法的 Stata 实现

3.1 命令安装

在 Stata 命令窗口中输入如下命令即可自动安装 synth 命令:

ssc install synth, replace

3.2 语法格式

synth 的基本语法格式如下:

synth depvar predictorvars(x1 x2 x3) , trunit(#) trperiod(#)   ///
   [ counit(numlist) xperiod(numlist) mspeperiod()  ///
   resultsperiod() nested allopt unitnames(varname) ///
   figure keep(file) customV(numlist) optsettings ]

具体解释如下:

3.3 加州控烟案例

背景:1988年11月美国加州通过了当代美国最大规模的控烟法(anti-tobacco legislation),并于1989年1月开始生效。该法将加州的香烟消费税(cigarette excise tax)提高了每包25美分,将所得收入专项用于控烟的教育与媒体宣传,并引发了一系列关于室内清洁空气的地方立法(local clean indoor-air ordinances),比如在餐馆、封闭工作场所等禁烟。Abadie et al. (2010)根据美国1970-2000年的州际面板数据,采用合成控制法研究美国加州1988年第99号控烟法(Proposition 99)的效果。

. sysuse smoking      (打开数据集)
. xtset state year       (设为面板数据)
. synth cigsale retprice lnincome age15to24 beer  ///
    cigsale(1975) cigsale(1980) cigsale(1988),    ///
    trunit(3)trperiod(1989) xperiod(1980(1)1988)  ///
    figure nested keep(smoking_synth)

具体解释如下:

由 Table2 可知,大多数州的权重为 0,而只有以下五个州的权重为正,即 Colorado (0.161),Connecticut (0.068),Montana (0.201),Nevada (0.235) 与 Utah (0.335)。我们随后会用这五个州的实际香烟消费量的加权平均值作为 合成加州 的替代指标。

合成控制法-权重设定

考察加州与合成加州的预测变量是否接近:


在这里插入图片描述

从上表 Table1 可知,加州与合成加州的预测变量均十分接近,故合成加州可以很好地复制加州的经济特征。然后比较二者的人均香烟消费量在 1989 年前后的表现:


在这里插入图片描述

从上图可知,在 1989 年控烟法之前,合成加州的人均香烟消费与真实加州几乎如影相随,表明合成加州可以很好地作为加州如未控烟的反事实替身。在控烟法实施之后,加州与合成加州的人均香烟消费量即开始分岔,而且此效应越来越大。

紧接着,调用前面已存的数据集 smoking_synth.dta,计算加州与合成加州人均香烟消费之差(即处理效应),然后画图:

. use smoking_synth.dta, clear 
*- 定义处理效应为变量 effect
*    其中, “_Y_treated” 与 “_Y_synthetic” 分别表示处理地区与合成控制的结果变量
. gen effect= _Y_treated - _Y_synthetic
. label variable _time "year"
. label variable effect "gap in per-capita cigarette sales (in packs)"
. line effect _time, xline(1989,lp(dash)) yline(0,lp(dash))

上图显示,加州控烟法对于人均香烟消费量有很大的负效应,而且此效应随着时间推移而变大。具体来说,在 1989-2000 年期间,加州的人均年香烟消费减少了 20 多包,大约下降了 25% 之多,故其经济效应十分显著(economically significant)。

连享会计量方法专题……

3.4 房产税对产业转移的影响:来自重庆和上海的经验证据

(研究背景请看原文链接)

. synth 工业相对产值 工业相对产值(2006(1)2010) 相对工资 ln人均GDP 财政支出占GDP比重 ln人口密度人平方公里   ///
ln年末金融机构存款余额万元 ln医院卫生院床位数张 ln国际互联网用户数户  工业相对产值(2006) 工业相对产值(2008) ///
工业相对产值(2010), trunit(26) trperiod(2011) nested fig
----------------------------------------------------------------------------------------------------------------------
Synthetic Control Method for Comparative Case Studies
----------------------------------------------------------------------------------------------------------------------

First Step: Data Setup
----------------------------------------------------------------------------------------------------------------------
Data Setup successful
----------------------------------------------------------------------------------------------------------------------
                Treated Unit: 26
               Control Units: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34
----------------------------------------------------------------------------------------------------------------------
          Dependent Variable: 工业相对产值
  MSPE minimized for periods: 2006 2007 2008 2009 2010
Results obtained for periods: 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
----------------------------------------------------------------------------------------------------------------------
                  Predictors: 工业相对产值(2006(1)2010) 相对工资 ln人均GDP 财政支出占GDP比重 ln人口密度人平方公里
                              ln年末金融机构存款余额万元 ln医院卫生院床位数张 ln国际互联网用户数户 工业相对产值(2006) 工业相对产值(20008) 工业相对产值(2010)
----------------------------------------------------------------------------------------------------------------------
Unless period is specified
predictors are averaged over: 2006 2007 2008 2009 2010
----------------------------------------------------------------------------------------------------------------------
Second Step: Run Optimization
----------------------------------------------------------------------------------------------------------------------
Nested optimization requested
Starting nested optimization module
Optimization done
----------------------------------------------------------------------------------------------------------------------
Optimization done
----------------------------------------------------------------------------------------------------------------------

Third Step: Obtain Results
----------------------------------------------------------------------------------------------------------------------
Loss: Root Mean Squared Prediction Error

---------------------
   RMSPE |   .028082 
---------------------
----------------------------------------------------------------------------------------------------------------------
Unit Weights:

-----------------------
    Co_No | Unit_Weight
----------+------------
        1 |           0
        2 |        .084
        3 |           0
        4 |           0
        5 |           0
        6 |        .672
        7 |           0
        8 |           0
        9 |           0
       10 |           0
       11 |           0
       12 |           0
       13 |        .244
       14 |           0
       15 |           0
       16 |           0
       17 |           0
       18 |           0
       19 |           0
       20 |           0
       21 |           0
       22 |           0
       23 |           0
       24 |           0
       25 |           0
       27 |           0
       28 |           0
       29 |           0
       30 |           0
       31 |           0
       32 |           0
       33 |           0
       34 |           0
----------------------------------------------------------------------------------------------------------------------
Predictor Balance:
------------------------------------------------------
                               |   Treated  Synthetic 
-------------------------------+----------------------
     工业相对产值(2006(1)2010) |  1.150089   1.150037 
                      相对工资 |  1.619055   1.013639 
                     ln人均GDP |  9.817525   10.73459 
             财政支出占GDP比重 |    .18338   .1116527 
          ln人口密度人平方公里 |  5.977395   6.399682 
    ln年末金融机构存款余额万元 |  18.25113   17.72419 
          ln医院卫生院床位数张 |  11.27253   10.37265 
          ln国际互联网用户数户 |   14.7616   13.70787 
            工业相对产值(2006) |  .9416254   .9369883 
            工业相对产值(2008) |  1.132921   1.150078 
            工业相对产值(2010) |  1.377864   1.325148 
------------------------------------------------------
在这里插入图片描述

4. 安慰剂检验

4.1 安慰剂检验一

Abadie et al. (2010) 认为,在比较案例研究中,由于潜在的控制地区数目通常并不多,故不适合使用大样本理论进行统计推断。为此,Abadie et al. (2010) 提出使用 “安慰剂检验” (placebo test)来进行统计检验,这种方法类似于统计学中的 “组合检验”(permutation test),适用于任何样本容量。

在上图中,黑线表示加州的处理效应(即加州与合成加州的人均香烟消费之差),而灰线表示其他38、34、29、19个控制州的安慰剂效应(即这些州与其相应合成州的人均香烟消费之差)。显然,与其他州的安慰剂效应相比,加州的(负)处理效应显得特别大。假如加州的控烟法并无任何效应,则在这39、35、30、20个州中,碰巧看到加州的处理效应最大的概率仅为 1/39 = 0.0256,1/35 = 0.0286,1/30 = 0.0333,1/20 = 0.05,而这都小于常用的显著性水平0.05,故初步可知黑线处理效应的确是加州控烟的效果。

****稳健性检验*****************************
//有效性检验(仅展示重庆房产税对工业相对产值影响的稳健性检验程序)
************************************稳健性检验一(工业相对产值为目标变量)************************************
//政策实施前均方预测误差的平方根
tempname resmat  //设定一个临时矩阵叫做resmat
        forvalues i = 1/35 { //这里的循环是指将1到4个州分别做一次合成控制,也就是把2-4州,分别当做处理组进行合成控制
        synth 工业相对产值 相对工资 ln人均GDP 财政支出占GDP比重 ln人口密度人平方公里  ln年末金融机构存款余额万元   ///
        ln医院卫生院床位数张 ln国际互联网用户数户  工业相对产值(2006) 工业相对产值(2008) 工业相对产值(2010), trunit(`i')  ///
        trperiod(2011) xperiod(2006(1)2010) mspeperiod
        matrix `resmat' = nullmat(`resmat') \ e(RMSPE)  //临时矩阵等于每个城市做处理进行合成控制时候的rmspe值
        local names `"`names' `"`i'"'"'  //设定暂元names 为 1 2 3 4 ''' 35
        }
        mat colnames `resmat' = "RMSPE"  //临时矩阵的列名定义为RMSPE
        mat rownames `resmat' = `names' // 临时矩阵的行名为names
        matlist `resmat' , row("Treated Unit") //展示临时矩阵,并在行的打头表示为“treated unit”
        ** loop through units
        ** loop throu
//各城市预测误差分布图
forval i=1/35{
qui synth 工业相对产值 相对工资 ln人均GDP 财政支出占GDP比重 ln人口密度人平方公里  ln年末金融机构存款余额万元 ln医院卫生院床位数张 ln国际互联网用户数户  工业相对产值(2006) 工业相对产值(2008) 工业相对产值(2010), xperiod(2006(1)2010) trunit(`i') trperiod(2011) keep(synth_`i', replace)
}

forval i=1/35{
use synth_`i', clear
rename _time years
gen tr_effect_`i' = _Y_treated - _Y_synthetic
keep years tr_effect_`i'
drop if missing(years)
save synth_`i', replace
}
**

use synth_1, clear
forval i=2/35{
qui merge 1:1 years using synth_`i', nogenerate
}

**
**删除拟合不好的城市及上海市(干预组)
drop tr_effect_2     //删除天津
drop tr_effect_20    //删除武汉
drop tr_effect_35    //删除上海

local lp1
forval i=1/1 {
   local lp1 `lp1' line tr_effect_`i' years, lpattern(dash) lcolor(gs8) ||
}
** 
local lp2
forval i=3/19 {
   local lp2 `lp2' line tr_effect_`i' years, lpattern(dash) lcolor(gs8) ||
}
 
 local lp3
forval i=21/34 {
   local lp3 `lp3' line tr_effect_`i' years, lpattern(dash) lcolor(gs8) ||
}
 
 **create plot
twoway `lp1' `lp2' `lp3'  || line tr_effect_26 years, ///
lcolor(black) legend(off) xline(2011, lpattern(dash))
在这里插入图片描述

连享会计量方法专题……

4.2 安慰剂检验二

安慰剂检验的另一方式是直接将每个州“干预后的MSPE”与“干预前的MSPE”相比,即计算二者的比值。其基本逻辑如下。对于处理地区加州而言,如果控烟法有效果,则合成控制将无法很好地预测真实加州干预后的结果变量,导致较大的干预后MSPE。然而,如果在干预之前,合成加州就无法很好地预测真实加州的结果变量(较大的干预前MSPE),这也会导致干预后MSPE增大,故取二者的比值以控制前者的影响。如果加州控烟法确实有较大的处理效应,而其他州的安慰剂效应都很小,则应该观测到加州的“干预后MSPE”与“干预前MSPE”之比值明显高于其他各州,而这为下图所证实。

在这里插入图片描述

从上图可知,加州的干预后MSPE是干预前MSPE的大约130倍,高于所有其他38个州。如果加州控烟法完全无效,而由于偶然因素使得此比值在所有39州中最大的概率仅为 1/39 = 0.026。

连享会计量方法专题……

5. 参考资料


连享会计量方法专题……

关于我们


欢迎加入Stata连享会(公众号: StataChina)
上一篇下一篇

猜你喜欢

热点阅读