域外知识

主成分计算权重全步骤梳理!

2022-05-13  本文已影响0人  spssau

一、研究场景

主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。除此之外,主成分分析可用于权重计算和综合竞争力研究。即主成分分共有三个实际应用场景:

二、SPSSAU操作

SPSSAU左侧仪表盘“进阶方法”→“主成分”;

三、SPSSAU一般步骤

第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6。

第二步:主成分与分析项对应关系判断。

特别提示:如果研究目的完全在于信息浓缩,并且找出主成分与分析项对应关系,此时SPSSAU建议使用因子分析【请参考因子分析手册】,而非主成分分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。

有时不太会关注主成分与分析项的对应关系情况,比如进行综合竞争力计算时,不需要过多关注主成分与分析项的对应关系情况。

主成与分析项对应关系判断:假设预期为3个主成分,分析项为10个;主成分与分析项交叉共得到30个数字,此数字称作“载荷系数”(载荷系数值表示分析项与主成分之间的相关程度); 针对每个主成分,对应10个”载荷系数”,针对每个分析项,则有3个“载荷系数值”(比如0.765,-0.066,0.093),选出3个数字绝对值大于0.4的那个值(0.765),如果其对应主成分1,则说明此分析项应该划分在主成分1下面.

对不合理分析项进行删除,共有三种情况; 第一类:如果分析项的共同度(公因子方差)值小于0.4,则对应分析项应该作删除处理;第二类:某分析项对应的“载荷系数”的绝对值,全部均小于0.4,也需要删除此分析项;第三类:如果某分析项与主成分对应关系出现严重偏差(通常也称作‘张冠李戴’),也需要对该分析项进行删除处理.

第三步:主成分命名

在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.

四、主成分分析计算权重

1.方差解释率表格

使用主成分分析得到方差解释率表格,主成分分析一共提取出2个主成分,特征根值均大于1,此2个主成分的方差解释率分别是54.450%,7.798%,累积方差解释率为62.248%。

2.载荷系数表格

载荷系数表格里显示的是各分析项在主成分中的载荷系数,载荷系数可以反映主成分对于分析项的信息提取情况。

在计算分析项权重的时候,需要利用载荷系数等信息进行计算,共分为三步:

第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根。

3.线性组合系数及权重结果

在计算分析项权重的时候,需要利用载荷系数等信息进行计算,共分为三步:

第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根。

例:主成分1:

以此类推。

主成分2:

以此类推。

第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率,即得到综合得分系数。

例:(0.287*54.45%)/62.25% + (0.1201*7.80%)/62.25%≈0.2661;

(0.278*54.45%)/62.25% + (0.1201*7.80%)/62.25%≈0.2683;

(0.2443*54.45%)/62.25% + (0.5818 *7.80%)/62.25%≈0.2866;

(0.2617*54.45%)/62.25% + (0.4385 *7.80%)/62.25%≈0.2839;

以此类推。

第三:计算权重,将综合得分系数进行求和归一化处理即得到各指标权重值。

求和归一化: 

例:综合得分系数和为3.2671,(0.2661+0.2683+…+0.2199=3.2671)。

0.2661/3.2671=8.15%;0.2683/3.2671=8.21%;0.2866/3.2671=8.77%;以此类推。

4.载荷图

载荷图是针对成分与旋转后载荷值关系的图形化展示,使用较少,通常需要手工加‘圆圈’把挨在一起的因子圈起来,更直观展示成分与分析项的隶属对应关系情况。由于可读性和解释性问题,一般只关注于方差解释率靠前的前面几个成分,多数情况下只关注2个。

五、其他输出指标说明

1.KMO 和 Bartlett 的检验

使用主成分分析进行信息浓缩研究,首先分析研究数据是否适合进行主成分分析,从上表可以看出:KMO为0.910,大于0.6,满足主成分分析的前提要求,意味着数据可用于主成分分析研究。以及数据通过Bartlett 球形度检验(p<0.05),说明研究数据适合进行主成分分析。

2.成份得分系数矩阵

 使用主成分分析目的在于信息浓缩,则忽略“成份得分系数矩阵”表格。如果使用主成分分析法进行权重计算,则需要使用“成份得分系数矩阵”建立主成分和研究项之间的关系等式(基于标准化后数据建立关系表达式),如下:

成分得分1

=0.104*A1+0.101*A2+…+0.101*D2+0.090*D3;

成分得分2

=0.115*A1+0.192*A2+…-0.044*D2+0.025*D3;

3.碎石图

  可结合碎石图辅助判断主成分提取个数。当折线由陡峭突然变得平稳时,陡峭到平稳对应的主成分个数即为参考提取主成分个数。实际研究中更多以专业知识,结合主成分与研究项对应关系情况,综合权衡判断得出主成分个数。图中可以看出当横坐标为2时,折线突然变得比较平稳。

六、疑难解惑

1.主成分回归是什么意思?

主成分分析后,选中保存‘成分得分’,SPSSAU系统会新生成标题用于标识‘成分得分’,比如:PcaScore1_1234,继续使用‘成分得分’用于接下来的线性回归分析,即称作‘主成分回归’,通常‘主成分回归’用于解决共线性问题。

2.SPSSAU时,面板数据如何进行主成分分析?

面板数据可直接进行主成分分析,面板数据格式相对较为特殊,在分析上直接针对研究指标进行分析即可。

3. SPSSAU时,成分得分是标准化后的数据进行吗?

成分得分的数据计算,默认是基于标准化后的数据进行。

七、总结

在各个领域的科学研究中,为了全面客观的分析问题,往往需要对反映事物的多个变量进行大量的观测,如果对这些变量进行一个一个的分析,可能会造成看待事物片面,不好得出一致的结论,主成分分析就是考虑各指标之间的相互关系,利用降维的思维,把多个指标转换成较少的几个互不相关的综合指标,从而使研究变的更简单。以上就是主成分分析的指标说明。

更多干货请前往SPSSAU官网查看。

上一篇下一篇

猜你喜欢

热点阅读