粒子群优化算法
链接:粒子群优化算法
全文引用,仅作为笔记参考。
粒子群算法的思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。粒子群算法与其他现代优化方法相比的一个明显特色就是所需要调整的参数很少、简单易行,收敛速度快,已成为现代优化方法领域研究的热点。
粒子群算法的基本思想
设想这样一个场景:一群鸟在随机搜索食物。已知在这块区域里只有一块食物;所有的鸟都不知道食物在哪里;但它们能感受到当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?
1. 搜寻目前离食物最近的鸟的周围区域
2. 根据自己飞行的经验判断食物的所在。
PSO正是从这种模型中得到了启发,PSO的基础是信息的社会共享
算法介绍
每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。
所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。
每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。
每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。
粒子速度更新公式包含三部分: 第一部分为“惯性部分”,即对粒子先前速度的记忆;第二部分为“自我认知”部分,可理解为粒子i当前位置与自己最好位置之间的距离;第三部分为“社会经验”部分,表示粒子间的信息共享与合作,可理解为粒子i当前位置与群体最好位置之间的距离。
粒子群算法流程
第1步 在初始化范围内,对粒子群进行随机初始化,包括随机位置和速度
第2步 根据fitness function,计算每个粒子的适应值
第3步 对每个粒子,将其当前适应值与其个体历史最佳位置(pbest)对应的适应值作比较,如果当前的适应值更高,则用当前位置更新粒子个体的历史最优位置pbest
第4步 对每个粒子,将其当前适应值与全局最佳位置(gbest)对应的适应值作比较,如果当前的适应值更高,则用当前位置更新粒子群体的历史最优位置gbest
第5步 更新粒子的速度和位置
第6步 若未达到终止条件,则转第2步
【通常算法达到最大迭代次数或者最佳适应度值得增量小于某个给定的阈值时算法停止】
粒子群算法流程图如下:
计算示例
以Ras函数(Rastrigin's Function)为目标函数,求其在x1,x2∈[-5,5]上的最小值。这个函数对模拟退火、进化计算等算法具有很强的欺骗性,因为它有非常多的局部最小值点和局部最大值点,很容易使算法陷入局部最优,而不能得到全局最优解。如下图所示,该函数只在(0,0)处存在全局最小值0。
代码略,见原链接。