一文读懂Accuracy,precision,recall

2020-03-09  本文已影响0人  nowherespyfly

首先,需要区分四个概念:TP(True Positive,真阳性),TN(True Negative,真阴性),FP(False Positive,假阳性)以及FN(False Negetive,假阴性)。
举例:有10个人来检测糖尿病,其中1,3,5号有糖尿病,剩下的没有,即1,3,5号为正样本,2,4,6,7,8,9,10为负样本。
我们的糖尿病系统检测结果是,1,3,6号有糖尿病,剩下的没有。

1. 准确率(Accuracy)

准确率计算了预测正确的样本数,占总样本数的比例:
Accuracy = n_correct / n_total = (TP + TN) / (TP + TN + FP + FN)

2. 精度(Precision)和召回(Recall)

考虑模型返回的前N个正样本,

3. ROC曲线

4. ROC曲线和P-R曲线比较

如下图,ac是ROC曲线,bd是P-R曲线,可以看到,ROC曲线的横纵坐标走势是相同的,而P-R曲线则是反着的。
不管是Precision,还是Recall,其实P-R曲线只考虑了正样本(预测对多少个正样本,以及找出来多少正样本),而ROC曲线即考虑了正样本(TPR,找出来多少正样本),也考虑到了负样本(找错了多少负样本)。当正负样本比例发生变化时,P-R曲线的形状会发生较大的变化,而ROC曲线则比较稳定。
因此,ROC曲线能够更加稳定的反映模型本身的好坏,适用于更多的场景。但是,当希望观测到特定数据集上的表现时,P-R曲线则可以更直观的反映其性能。

5. COCO中的mAP

这个问题困扰我好久了,今天终于搞得差不多了。检测(或者实例分割)中的mAP,也就是mean Average Precision,其实跟二分类的AP很像。不同之处在于,检测结果不仅要给出bounding box,还要给出类别;第二,bounding box跟ground truth的框不可能完全重合,需要定义怎样算预测对了,怎样算预测错了。

从recall=0,到recall=1,将这11个precision加起来求平均,就是这一类的average precision。



所有类的AP平均,得到的就是IoU阈值为0.5的AP,即AP@50。有的地方也把这个值称为mAP,需要看具体语境。

上一篇 下一篇

猜你喜欢

热点阅读