生信可视化

ggplot2画散点图展示恩比德面对不同的防守者的百回合得分

2020-10-27  本文已影响0人  小明的数据分析笔记本

在一个篮球相关的公众号的文章里发现了一张图片

image.png

第一感觉应该是是R语言的ggplot2包做出来的,这么好的学习素材不重复一下岂不是可惜了,遂以关键词“Joel Embiids Points Per 100 Possessions When Guarded By”搜索找到了原文https://www.reddit.com/r/nba/comments/bjuiy4/oc_joel_embiids_points_per_100_possessions/

有的评论提到原始数据来自这个链接 https://stats.nba.com/player/203954/matchups/?sort=POSS&dir=1&Season=2018-19&SeasonType=Regular%20Season&DateFrom=04%2F29%2F2019&DateTo=04%2F30%2F2019

但是自己还没有研究出来如何在这个网站上找到特定的球员面对不同的防守者的得分的相关数据。

找到了原始代码

df %>% 
  ggplot(aes(x = DEF_PLAYER_NAME, y = pts.per.100, size = total.poss, fill = pts.per.100)) + 
  geom_point(alpha = .75, shape = 21, color = 'black') + 
  coord_flip() +
  theme_custom() +
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  scale_size_continuous(range = c(2, 7)) +
  theme(legend.position=c(0.15, 0.835), legend.background = element_rect(fill="floralwhite")) +
  scale_fill_gradient2(guide=FALSE, low = ("#0571b0"), mid = "white",
                         high = ("#ca0020"), midpoint = 38.6) + 
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55') +
  theme(plot.title = element_text(face = 'bold', size = 11, hjust = 0.5))  +
  theme(plot.subtitle = element_text(face = 'italic', size = 9, hjust = 0.5)) + 
  annotate(geom = 'label', x= 3, y = 45, label = "Season average\n38.6 pts per 100", family = 'Gill Sans MT', fontface = 'bold', fill = 'floralwhite') +
  theme(plot.margin=unit(c(.75,.25,.5,0),"cm"))

那就不用原始数据了,根据图片和代码自己构造一份数据

根据以上代码可以看到作图的数据总共有三列

根据图片可以看到总共有29个防守者,得分范围在每百回合15到55之间,总共的回合数是50到200之间。

首先是构造数据
def_player_name<-paste0("Player","_",1:29)
pts.per.100<-seq(15,55,by=0.5)
total.poss<-seq(50,200,by=1)
df<-data.frame(def_player_name=sample(def_player_name,29,replace = F),
               pts.per.100=sample(pts.per.100,29,replace = F),
               total.poss=sample(total.poss,29,replace = F))
dim(df)
head(df)
基本的散点图
library(ggplot2)
ggplot(df,aes(x=def_player_name,y=pts.per.100,
              size=total.poss,fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')
image.png
接下来就是对这幅图进行美化

美化的内容包括

ggplot(df,aes(x=def_player_name,y=pts.per.100,
              size=total.poss,fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()
image.png

注意这里是如何实现的,升序和降序是经常用到的

ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 7))
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55') 
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") 
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  annotate(geom = 'label', x= 3, y = 45, 
           label = "Season average\n38.6 pts per 100", 
           family = 'Times New Roman', 
           fontface = 'bold', 
           fill = 'floralwhite') 
image.png
ggplot(df,aes(x=reorder(def_player_name,pts.per.100),
              y=pts.per.100,
              size=total.poss,
              fill=pts.per.100))+
  geom_point(alpha=0.75,shape=21,color='black')+
  coord_flip()+
  theme_bw()+
  scale_fill_gradient2(guide=FALSE, 
                       low = ("#0571b0"), 
                       mid = "white",
                       high = ("#ca0020"), 
                       midpoint = 38.6)+
  scale_size_continuous(range = c(2, 20))+
  scale_y_continuous(limits = c(15, 55), breaks = seq(15, 55, 5)) +
  geom_hline(yintercept = 38.6, linetype = 2, color = 'gray55')+
  labs(size = "Total Possessions", 
       title = "Joel Embiid's Points Per 100 Possessions When Guarded By ___", 
       subtitle = "Among players that guarded Embiid at least 50 possesions in 2018-19 (Regular Season + Playoffs)", 
       y = "Points per 100 possessions", 
       x = "") +
  annotate(geom = 'label', x= 3, y = 45, 
           label = "Season average\n38.6 pts per 100", 
           family = 'Times New Roman', 
           fontface = 'bold', 
           fill = 'floralwhite') +
  theme(legend.position=c(0.15, 0.835), 
        legend.background = element_rect(fill="floralwhite"),
        plot.title = element_text(face = 'bold', size = 11, hjust = 0.5),
        plot.subtitle = element_text(face = 'italic', size = 9, hjust = 0.5),
        plot.margin=unit(c(.75,.25,.5,0),"cm"))
image.png

好了,今天的内容就到这里了。

欢迎大家关注我的公众号

小明的数据分析笔记本

上一篇下一篇

猜你喜欢

热点阅读