Handler基础运用及源码分析
前言
众所周知,因为android平台不允许在子线程中更新ui,那么如何在子线程和主线程中通信呢?聪明的google工程师创造了handler来解决这一问题;今天就详细介绍下handler的使用及其原理:
基础使用
首先,handler的一个基础使用方法如下:
new Thread(){
@Override
public void run() {
super.run();
//需要先准备一个looper
Looper.prepare();
//创建handler
Handler handler = new Handler();
//循环起来
Looper.loop();
}
}.start();
可以看到,handler首先需要一个looper,looper的作用特别大。但是为什么主线程中只需要new Handler就可以使用呢,这个问题我们稍后解释。
先大致了解一下这三者数据结构之间的一个关系(一个粗略点的画法):
handler关系图.png handler数据结构.png
Handler源码分析
构造函数
先剖析一下Handler源码,handler是如何工作的:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
//发现是否有内存泄漏的可能性
final Class<? extends Handler> klass = getClass();
//匿名类,内部类,局部类,最好是静态类,否则警告会有内存泄漏的风险
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//获取一个looper。这个方法看如下阐述
mLooper = Looper.myLooper();
if (mLooper == null) {
//获取不到looper抛出异常
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
//取出looper的queue
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
从如上代码分析:在handler初始化时,会先判断class是否有内存泄漏的风险;然后取出looper,没有looper直接抛出异常(looper太重要了),然后取出looper绑定的messagequeue,取出callback,以及一个同步状态的变量async;
sendMessage
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
1.return的值并不意味着一定被处理了,只是说明插入队列成功了;
2.handler大部分处理消息最终都是通过这个api来实现的;
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
将消息插入到队列中.
Looper源码分析
构造函数
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
一个looper创建时,new 了一个messagequeue,同时取出本线程的对象;
可以得出结论:一个looper绑定了一个messagequeue;
myLooper()
looper.myLooper的代码如下,其实就是从ThreadLocal中取出looper。那么ThreadLocal又是什么作用的呢?简单来说,ThreadLocal是一个为了解决多线程安全的问题,给每个线程提供了一个储存变量副本的类,多说一句,threadLocal的主要作用是:1.解决并发问题;2.数据存储问题;
ThreadLocal的内部实现主要是靠threadLocalMap,维系了一个Entry,将threadLocal本身作为key,要存储的值作为value来实现。
这里不继续做扩展,感兴趣的改天写一个专门介绍。
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
prepare()
private static void prepare(boolean quitAllowed) {
//如果发现threadLocal已经设置过了,则报错,一个looper只能绑定一个thread
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
//给线程设置looper
sThreadLocal.set(new Looper(quitAllowed));
}
prepare方法中实际上就是将looper设置到Thread中去,这里就解释了looper是如何绑定到线程中,然后和handler产生交互的;
回到最开始,为什么主线程不用调这个方法呢,我们来看下activityThread的源码:
public static void main(String[] args) {
//前面有很多代码,和本文关系不大,先删减
Process.setArgV0("<pre-initialized>");
//可以看的出来,原来在main入口处已经做了prepare
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
//之后再循环
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
从上面代码分析,能很清楚地看出来,因为在main入口处已经调用了prepare和loop的方法,所以不需要再调用。同时在最终退出时已经执行了looper.quit()。
那么其实这里有个问题,既然在主线程中开启了无限循环,那么为什么主线程却没有出现卡顿呢?我们后续再分析。
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
代码很长,简单分析下:
1.开启一个无限循环方法,方法中不停去检测messagequeue中是否有message,如果有则调用msg.target.dispatchmessage去处理,msg.target在sendmessage时已经赋值了给当前的handler。所以其实就是调用了handler.handlemessage方法;
2.在检测message时可能会有block,因为message.next()也是个无限循环,去探测队列中是否有message需要处理;
MessageQueue源码分析
enqueueMessage()
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
}
return true;
}
代码较长,结论:
- 1.要想插入队列成功,首先需要赋值了target,也就是要有handler,其次标记下message的状态为inuse
- 2.将message传为mMessages,判断当前message 队列是否有消息,有的话设置为头;
- 3.取出时间到了的message设置为msg.next
next()
Message next() {
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//线程阻塞
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
}
}
}
代码也有点长,筛选了一些关键代码,涉及到了很多linux的管道机制,这一张回头详细解释,先大致说下如何取出message的:在无限循环的方法中判断msg.以及msg.target是否不为空,when是否和现在的时间匹配,如果条件都达到了,则return 这个msg。
小结
稍加整理下,可得出如下结论:
- 1.我们在使用handler的时候必须要先创建looper,执行prepare和loop的方法,结束之后需要quit。但是这些方法在主线程中已经做过了,所以无需重复;
- 2.发送消息是向messagequeue中插入消息enqueueMessage,而messageQueue就是一个先进先出的一种数据结构
- 3.messageQueue里插入消息后,looper.loop()里queue会不停地做一件事:取消息,如果取到了,则执行dispatchmessage方法;
- 4.queue.next()里也有一个无限循环的方法,去不停地从队列中取消息
Handler这个机制对于整个android来说实在是太重要了,
AsyncTask,View.post(runnable)等等可以说android中大部分的子线程主线程之间的通信都是通过handler实现的。一篇文章讲不完,今天先介绍一个整体的运行机制和简单的源码分析。
后续继续分析如下问题:
- 1.messageQueue的数据结构
- 2.为什么主线程中执行loop却没有线程阻塞的感觉?
- 3.binder的机制