外泌体多组学06-血清外泌体中miRNA的有效数据量

2022-04-26  本文已影响0人  信你个鬼

文章信息

血液的组成:

血液的组成

我的关注

Serum Exosome Characterization

通过透射电镜、蛋白印迹和NTA结合从参与者中分离的外泌体进行鉴定:Size=100nm;exosomal markers:TSG101 and CD63

FIGURE 1 | Characterization and identifification of serum exosome by ultracentrifugation

用miRBase 数据库中的已知miRNA序列进行已知miRNA鉴定,并差异分析: 相对于对照组(18个样本),严重骨质疏松组(SOP组,16个样本)分别有169个显著上调miRNAs 和70个显著下调miRNAs (p-value<0.05 and {log2FC|>1)

FIGURE 2 | Differentially expressed miRNAs in serum exosomes between SOP and control library

文章的数据

URL:https://figshare.com/articles/dataset/MicroRNAs_in_serum_exosomes_for_postmenopausal_osteoporosis_-_A2-Sg_expr_xls/17086307

到此,发现整个文章的内容其实没什么好看的,特别是还有好几个错误。看这篇文章就是其中有一句话:

建库测序

文中使用了一个过滤指标:

We filtered out all the samples with library size (total uniquely mapped reads) <50,000 reads.

将文章中的数据下载下来,统计每个样本鉴定出来的sRNA看看:

rm(list=ls())
library(ggplot2)
library(reshape2)
library(ggsci)

data <- read.delim("count.xls")
data <- data[,c(1,2,4)] %>% melt(id.vars="Sample.name",variable.name="sRNA_Type",value.name="Num")
head(data)
data$sRNA_Type <- gsub(".count","",data$sRNA_Type)

ggplot(data, aes(x=Sample.name, y=Num,fill=sRNA_Type)) +
  geom_bar(stat="identity", position = "dodge",width = 0.8)+
  geom_text(aes(label=Num), vjust = -0.5, position=position_dodge(width=0.6))+
  xlab(label = NULL)+ylab(label = "sRNA Num")+
  theme_bw()+ theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank())+
  scale_fill_nejm()
  
ggsave(filename = "miRNA_Stat.png",width = 16,height = 7)

image-20220426002814209.png

再结合前面的五种外泌体中sRNA数据饱和度评估](https://www.jianshu.com/p/5f187ec55f22)

五种外泌体中sRNA数据饱和度

此回文章回顾得新意~

上一篇下一篇

猜你喜欢

热点阅读