计算机视觉笔记

Dual Attention Network for Scene

2019-01-08  本文已影响38人  yanghedada

这是一篇arXiv上的文章,也是关于注意力机制的工作,不过是在图像分割使用通道注意力机制。
paper

这是一篇使用两种注意力机制的文章:

  1. 通道注意力机制
    文中提到通道其实在分类时会起到不同作用,而使用通道注意力机制可以挖掘不用之间的相互依赖性

  2. 空间注意力机制
    空间注意力机制就是使模型更加关注图像中实体区域的贡献,减弱背景的影响。

主干网络以dilated FCN为主要结构:
在网络上使用如下两个注意力机制:

发现有大神进行了PPT讲解

一下类容来自冯爽朗

以上内容都是截图。。。主要是为了偷懒。。。

源码:github
本人比较关注注意力机制。。。
在源码的encoding/nn/attention.py中发现注意力机制模块:

如下:

class PAM_Module(Module):
    """ Position attention module"""
    #Ref from SAGAN
    def __init__(self, in_dim):
        super(PAM_Module, self).__init__()
        self.chanel_in = in_dim

        self.query_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.key_conv = Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
        self.value_conv = Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = Parameter(torch.zeros(1))

        self.softmax = Softmax(dim=-1)
    def forward(self, x):
        """
            inputs :
                x : input feature maps( B X C X H X W)
            returns :
                out : attention value + input feature
                attention: B X (HxW) X (HxW)
        """
        m_batchsize, C, height, width = x.size()
        proj_query = self.query_conv(x).view(m_batchsize, -1, width*height).permute(0, 2, 1) # reshape  to (m_batchsize, width*height, c)
        proj_key = self.key_conv(x).view(m_batchsize, -1, width*height)
        energy = torch.bmm(proj_query, proj_key) # 矩阵乘法
        attention = self.softmax(energy) # 添加非线性函数
        proj_value = self.value_conv(x).view(m_batchsize, -1, width*height)

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, C, height, width) # reshape到原图

        out = self.gamma*out + x # 相加
        return out


class CAM_Module(Module):
    """ Channel attention module"""
    def __init__(self, in_dim):
        super(CAM_Module, self).__init__()
        self.chanel_in = in_dim


        self.gamma = Parameter(torch.zeros(1))
        self.softmax  = Softmax(dim=-1)
    def forward(self,x):
        """
            inputs :
                x : input feature maps( B X C X H X W)
            returns :
                out : attention value + input feature
                attention: B X C X C
        """
        m_batchsize, C, height, width = x.size()
        proj_query = x.view(m_batchsize, C, -1)
        proj_key = x.view(m_batchsize, C, -1).permute(0, 2, 1)
        energy = torch.bmm(proj_query, proj_key)
        energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy)-energy
        attention = self.softmax(energy_new)
        proj_value = x.view(m_batchsize, C, -1)

        out = torch.bmm(attention, proj_value)
        out = out.view(m_batchsize, C, height, width)

        out = self.gamma*out + x
        return out

两个模块的融合在encoding/models/danet.py
中如下:

class DANetHead(nn.Module):
    def __init__(self, in_channels, out_channels, norm_layer):
        super(DANetHead, self).__init__()
        inter_channels = in_channels // 4
        self.conv5a = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())
        
        self.conv5c = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())

        self.sa = PAM_Module(inter_channels)
        self.sc = CAM_Module(inter_channels)
        self.conv51 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())
        self.conv52 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False),
                                   norm_layer(inter_channels),
                                   nn.ReLU())

        self.conv6 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))
        self.conv7 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))

        self.conv8 = nn.Sequential(nn.Dropout2d(0.1, False), nn.Conv2d(512, out_channels, 1))

    def forward(self, x):
        feat1 = self.conv5a(x)
        sa_feat = self.sa(feat1)
        sa_conv = self.conv51(sa_feat)
        sa_output = self.conv6(sa_conv)

        feat2 = self.conv5c(x)
        sc_feat = self.sc(feat2)
        sc_conv = self.conv52(sc_feat)
        sc_output = self.conv7(sc_conv)

        feat_sum = sa_conv+sc_conv
        
        sasc_output = self.conv8(feat_sum)

        output = [sasc_output]
        output.append(sa_output)
        output.append(sc_output)
        return tuple(output)

上面就是模型的融合,可以看到就是把两个模型进行逐元素相加操作。。

参考:
冯爽朗

上一篇下一篇

猜你喜欢

热点阅读