微调模型
2019-05-13 本文已影响0人
庵下桃花仙
# 将VGG16卷积基实例化
from keras.applications import VGG16
conv_base = VGG16(weights='imagenet', # 模型初始化检查点
include_top=False, # 指定模型最后是否包含密集连接分类器
input_shape=(150, 150, 3)) # 输入到网络中的图像张量的形状
print(conv_base.summary())
# 不使用数据增强的快速特征提取
import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator # 导入ImageDataGenerator类
base_dir = 'D:/DeepLearning/kaggle/cats_and_dogs_small'
train_dir = os.path.join(base_dir, 'train') # 路径拼接
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
# 使用数据增强的特征提取
from keras import models
from keras import layers
model = models.Sequential()
model.add(conv_base)
model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
print (model.summary())
'''
conv_base.trainable = False # 冻结卷积基
'''
# 冻结直到某一层的所有层
conv_base.trainable = True
set_trainable = False
for layer in conv_base.layers:
if layer.name == 'block5_conv1':
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False
# 利用冻结卷积基端到端地训练模型
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255) # 注意,不能增强验证数据
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
# 微调模型
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-5),
metrics=['acc'])
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=100,
validation_data=validation_generator,
validation_steps=50)
# 绘制结果
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
微调模型的训练精度和验证精度.png
微调模型的训练损失和验证损失.png