Pytorch小技巧集
2021-08-28 本文已影响0人
深思海数_willschang
查看torch版本,系统版本
import os
import torch
print(torch.__version__)
# posix , nt , java, 对应linux/windows/java虚拟机
print(os.name)
查看torch是否支持cuda(GPU),GPU数量,显示名称
import torch
# 是否支持gpu
print(torch.cuda.is_available())
# cuda版本号
print(torch.version.cuda)
# gpu数量
print(torch.cuda.device_count())
# gpu名称,0代表第一块显卡
print(torch.cuda.get_device_name(0))
# 返回当前设备索引
print(torch.cuda.current_device())
"""
True
10.2
1
GeForce GTX 1660 Ti
0
"""
device和workers全局定义
import os
import torch
# CPU or GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataloader里的多进程用到num_workers
workers = 0 if os.name=='nt' else 4
Pytorch一般导入包
%matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
import numpy as np
import pandas as pd
import os
import copy
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as transforms
from torchvision import utils
import torch.nn.functional as F
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchsummary import summary
# CPU or GPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataloader里的多进程用到num_workers
workers = 0 if os.name=='nt' else 4
查看数据或模型在哪个device上
import torch
import torch.nn as nn
# ----------- 判断模型是在CPU还是GPU上 ----------------------
model = nn.LSTM(input_size=10, hidden_size=4, num_layers=1, batch_first=True)
print(next(model.parameters()).device) # 输出:cpu
model = model.cuda()
print(next(model.parameters()).device) # 输出:cuda:0
model = model.cpu()
print(next(model.parameters()).device) # 输出:cpu
# ----------- 判断数据是在CPU还是GPU上 ----------------------
data = torch.ones([2, 3])
print(data.device) # 输出:cpu
data = data.cuda()
print(data.device) # 输出:cuda:0
data = data.cpu()
print(data.device) # 输出:cpu
用.is_cuda也可以判断模型和数据是否在GPU上,例如: data.is_cuda
计算卷积层后的输出大小
# 计算卷积层后的输出大小
import torch.nn as nn
def get_conv2d_out_shape(H_in, W_in, conv, pool=2):
# get conv arguments
kernel_size = conv.kernel_size
stride = conv.stride
padding = conv.padding
dilation = conv.dilation
# Ref: https://pytorch.org/docs/stable/nn.html
H_out=np.floor((H_in+2*padding[0]-dilation[0]*(kernel_size[0]-1)-1)/stride[0]+1)
W_out=np.floor((W_in+2*padding[1]-dilation[1]*(kernel_size[1]-1)-1)/stride[1]+1)
if pool:
H_out/=pool
W_out/=pool
return int(H_out),int(W_out)
# 示例
conv1 = nn.Conv2d(3, 8, kernel_size=3)
h, w = get_conv2d_out_shape(96,96,conv1)
print(h,w)