Android开发Android开发经验谈Android技术知识

java源码之Runnable、Callable和Future

2019-06-21  本文已影响18人  WangGavin

在java并发编程中,几乎都会用到Runnable、Callable、Future和FutureTask等类或接口,所以理解它们的概念和关系,对设计并发业务和源码阅读会有很大帮助。

1 Runnable

public interface Runnable {
    /**
     * When an object implementing interface <code>Runnable</code> is used
     * to create a thread, starting the thread causes the object's
     * <code>run</code> method to be called in that separately executing
     * thread.
     * <p>
     * The general contract of the method <code>run</code> is that it may
     * take any action whatsoever.
     *
     * @see     java.lang.Thread#run()
     */
    public abstract void run();
}

Runnable接口应该是被最终要被线程执行的类所实现,所以这些类必须实现无参的run()方法。

这个接口被设计为对象提供一个公共协议,这种对象会在它们活跃的时候执行一些代码块。比如Thread类就实现了Runnable接口,它在活跃的时候就会执行run方法。当然活跃时(being active)也可以当作是一个线程已被创建,然后还没有停止(stoped)的过程。

当然Runnable也为某些类提供了方法,这些类可以有活跃状态(active),但它不一定是Thread类.

当一个对象实现Runnable接口,通常是用于创建一个线程,然后线程会调用run方法,以执行这些设计在工作线程的业务代码。

2 Future

public interface Future<V> {
    // 尝试取消执行任务,如果任务已完成或者已取消等其他原因会取消失败;如果任务还未开始,则能取消成功,任务会不再执行;如果任务正在执行,则可以取消成功,如果取消是可以通过中断取消的,可以设置中断,否则取消会允许任务完成。
    boolean cancel(boolean mayInterruptIfRunning);

    // 返回任务完成之前是否已取消
    boolean isCancelled();

    // 返回任务是否已完成
    boolean isDone();
    // 获取到结果,该方法会阻塞到获取结果,可能会抛中断异常
    V get() throws InterruptedException, ExecutionException;
    // 获取到结果,可以设置超时时间
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

一个Future代表一个异步计算结果,接口方法提供了检查是否完成,获取结果,取消,设置结果操作。get方法会阻塞,直到任务返回结果。

3 Callable

public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

跟Runable差不多,只不过它可以返回结果,也可能会抛异常。Callable是为Runnable兼容Future而设计的,比如构造一个FutureTask时,FutureTask的构造方法可以把Runable转为Callable

4 RunnableFuture

public interface RunnableFuture<V> extends Runnable, Future<V> {
    // 设置计算结果,除非任务被取消
    void run();
}

RunnableFuture接口就是Runnable和Future的混合体,可以把它看作是一个Runnable,但这个Runnable可以获取到计算结果。

Executor是Runnable和Callable的调度容器,Future就是对于具体的Runnable或者Callable任务执行的抽象。

简单用法:

 public static final void main(String[] args){
        // runnable 队列
        BlockingQueue<Runnable>  blockingQueue = new LinkedBlockingDeque<>();
        // 线程工厂
        ThreadFactory threadFactory = new ThreadFactory() {
            private AtomicInteger atomicInteger = new AtomicInteger(1);
            @Override
            public Thread newThread(Runnable r) {
                int threadId = atomicInteger.getAndIncrement();
                System.out.println("thread are created:"+threadId);
                return new Thread(r,"thread #"+threadId);
            }
        };
        // cpu 核心数
        final int cpuCore = Runtime.getRuntime().availableProcessors();
        // 线程池核心线程数
        final int coreCount = Math.min(2,Math.min(4,cpuCore-1));
        // 线程池最大线程数
        final int maxCount = cpuCore*2-1;
        // 临时线程存活时间
        final int KEEP_ALIVE_SECONDS = 30;
        // 构造线程池
        final ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
            coreCount,maxCount,KEEP_ALIVE_SECONDS,TimeUnit.SECONDS,blockingQueue,threadFactory
        );
        // 提交一个callable
        Future<Integer> future = threadPoolExecutor.submit(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                System.out.println("thread:"+Thread.currentThread());
                Thread.sleep(3000);
                return 200;
            }
        });

        System.out.println(">>>>>>>>>>>>>>>>getResult>>>>>>>>>>>>");
        try {
            int result = future.get();
            System.out.println("result: "+result);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

5 FutureTask

public class FutureTask<V> implements RunnableFuture<V> {
    /**
     * The run state of this task, initially NEW.  The run state
     * transitions to a terminal state only in methods set,
     * setException, and cancel.  During completion, state may take on
     * transient values of COMPLETING (while outcome is being set) or
     * INTERRUPTING (only while interrupting the runner to satisfy a
     * cancel(true)). Transitions from these intermediate to final
     * states use cheaper ordered/lazy writes because values are unique
     * and cannot be further modified.
     *
     * Possible state transitions:
     * NEW -> COMPLETING -> NORMAL
     * NEW -> COMPLETING -> EXCEPTIONAL
     * NEW -> CANCELLED
     * NEW -> INTERRUPTING -> INTERRUPTED
     */
    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;

    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;

    /**
     * Returns result or throws exception for completed task.
     *
     * @param s completed state value
     */
    @SuppressWarnings("unchecked")
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }

    /**
     * Creates a {@code FutureTask} that will, upon running, execute the
     * given {@code Callable}.
     *
     * @param  callable the callable task
     * @throws NullPointerException if the callable is null
     */
    public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

    /**
     * Creates a {@code FutureTask} that will, upon running, execute the
     * given {@code Runnable}, and arrange that {@code get} will return the
     * given result on successful completion.
     *
     * @param runnable the runnable task
     * @param result the result to return on successful completion. If
     * you don't need a particular result, consider using
     * constructions of the form:
     * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
     * @throws NullPointerException if the runnable is null
     */
    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

    public boolean isCancelled() {
        return state >= CANCELLED;
    }

    public boolean isDone() {
        return state != NEW;
    }

    public boolean cancel(boolean mayInterruptIfRunning) {
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            finishCompletion();
        }
        return true;
    }

    /**
     * @throws CancellationException {@inheritDoc}
     */
    public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        return report(s);
    }

    /**
     * @throws CancellationException {@inheritDoc}
     */
    public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }

    /**
     * Protected method invoked when this task transitions to state
     * {@code isDone} (whether normally or via cancellation). The
     * default implementation does nothing.  Subclasses may override
     * this method to invoke completion callbacks or perform
     * bookkeeping. Note that you can query status inside the
     * implementation of this method to determine whether this task
     * has been cancelled.
     */
    protected void done() { }

    /**
     * Sets the result of this future to the given value unless
     * this future has already been set or has been cancelled.
     *
     * <p>This method is invoked internally by the {@link #run} method
     * upon successful completion of the computation.
     *
     * @param v the value
     */
    protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

    /**
     * Causes this future to report an {@link ExecutionException}
     * with the given throwable as its cause, unless this future has
     * already been set or has been cancelled.
     *
     * <p>This method is invoked internally by the {@link #run} method
     * upon failure of the computation.
     *
     * @param t the cause of failure
     */
    protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
    }

    public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

    /**
     * Executes the computation without setting its result, and then
     * resets this future to initial state, failing to do so if the
     * computation encounters an exception or is cancelled.  This is
     * designed for use with tasks that intrinsically execute more
     * than once.
     *
     * @return {@code true} if successfully run and reset
     */
    protected boolean runAndReset() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return false;
        boolean ran = false;
        int s = state;
        try {
            Callable<V> c = callable;
            if (c != null && s == NEW) {
                try {
                    c.call(); // don't set result
                    ran = true;
                } catch (Throwable ex) {
                    setException(ex);
                }
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
        return ran && s == NEW;
    }

    /**
     * Ensures that any interrupt from a possible cancel(true) is only
     * delivered to a task while in run or runAndReset.
     */
    private void handlePossibleCancellationInterrupt(int s) {
        // It is possible for our interrupter to stall before getting a
        // chance to interrupt us.  Let's spin-wait patiently.
        if (s == INTERRUPTING)
            while (state == INTERRUPTING)
                Thread.yield(); // wait out pending interrupt

        // assert state == INTERRUPTED;

        // We want to clear any interrupt we may have received from
        // cancel(true).  However, it is permissible to use interrupts
        // as an independent mechanism for a task to communicate with
        // its caller, and there is no way to clear only the
        // cancellation interrupt.
        //
        // Thread.interrupted();
    }

    /**
     * Simple linked list nodes to record waiting threads in a Treiber
     * stack.  See other classes such as Phaser and SynchronousQueue
     * for more detailed explanation.
     */
    static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

    /**
     * Removes and signals all waiting threads, invokes done(), and
     * nulls out callable.
     */
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

    /**
     * Awaits completion or aborts on interrupt or timeout.
     *
     * @param timed true if use timed waits
     * @param nanos time to wait, if timed
     * @return state upon completion
     */
    private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

    /**
     * Tries to unlink a timed-out or interrupted wait node to avoid
     * accumulating garbage.  Internal nodes are simply unspliced
     * without CAS since it is harmless if they are traversed anyway
     * by releasers.  To avoid effects of unsplicing from already
     * removed nodes, the list is retraversed in case of an apparent
     * race.  This is slow when there are a lot of nodes, but we don't
     * expect lists to be long enough to outweigh higher-overhead
     * schemes.
     */
    private void removeWaiter(WaitNode node) {
        if (node != null) {
            node.thread = null;
            retry:
            for (;;) {          // restart on removeWaiter race
                for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                    s = q.next;
                    if (q.thread != null)
                        pred = q;
                    else if (pred != null) {
                        pred.next = s;
                        if (pred.thread == null) // check for race
                            continue retry;
                    }
                    else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                          q, s))
                        continue retry;
                }
                break;
            }
        }
    }

    // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long stateOffset;
    private static final long runnerOffset;
    private static final long waitersOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = FutureTask.class;
            stateOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("state"));
            runnerOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("runner"));
            waitersOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("waiters"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }

}

FutureTask是实现了RunableFuture接口,提供了一个任务执行的操作实现,比如取消,获取结果等。

它可以通过构造方法包装Runnable和Callable

由于FutureTask实现了Runnable,因此它既可以通过Thread来直接执行,也可以提交给ExecuteService来执行。

所以上面的线程池使用还可以这样:

public static final void main(String[] args){
        // runnable 队列
        BlockingQueue<Runnable>  blockingQueue = new LinkedBlockingDeque<>();
        // 线程工厂
        ThreadFactory threadFactory = new ThreadFactory() {
            private AtomicInteger atomicInteger = new AtomicInteger(1);
            @Override
            public Thread newThread(Runnable r) {
                int threadId = atomicInteger.getAndIncrement();
                System.out.println("thread are created:"+threadId);
                return new Thread(r,"thread #"+threadId);
            }
        };
        // cpu 核心数
        final int cpuCore = Runtime.getRuntime().availableProcessors();
        // 线程池核心线程数
        final int coreCount = Math.min(2,Math.min(4,cpuCore-1));
        // 线程池最大线程数
        final int maxCount = cpuCore*2-1;
        // 临时线程存活时间
        final int KEEP_ALIVE_SECONDS = 30;
        // 构造线程池
        final ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
            coreCount,maxCount,KEEP_ALIVE_SECONDS,TimeUnit.SECONDS,blockingQueue,threadFactory
        );

        RunnableFuture<Integer> future = new FutureTask<Integer>(new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                System.out.println("thread:"+Thread.currentThread());
                Thread.sleep(3000);
                return 200;
            }
        });

        // 提交一个runnableFuture
        threadPoolExecutor.submit(future);

        System.out.println(">>>>>>>>>>>>>>>>getResult>>>>>>>>>>>>");
        try {
            int result = future.get();
            System.out.println("result: "+result);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

FutureTask最终执行任务其实是执行它里面callable成员的call方法,所以在构造FutureTask时,他会把Runable转换callable。

    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

然后转换实现又是通过一个适配器实现的。

    public static <T> Callable<T> callable(Runnable task, T result) {
        if (task == null)
            throw new NullPointerException();
        return new RunnableAdapter<T>(task, result);
    }
    /**
     * A callable that runs given task and returns given result
     */
    static final class RunnableAdapter<T> implements Callable<T> {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

6 总的关系

image

7 深入:FutureTask如果实现Future操作?

待研究

上一篇下一篇

猜你喜欢

热点阅读