单细胞文章复现丨单细胞测序揭示肺腺癌中不同的肿瘤微环境模式

2023-12-19  本文已影响0人  生信大碗

文章标题

Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma

这篇文章通过单细胞RNA测序技术,对十例人类肺腺癌和十例正常组织进行了深入研究,发现肺癌细胞的转录组存在异质性,反映了肿瘤的病理分级和基因突变途径。同时,文章还发现存在两种不同的微环境模式,即免疫激活的CP²E模式和惰性的N³MC模式。这两种模式在预后方面具有不同的影响。此外,文章还发现微环境标记基因和签名在整体肿瘤中具有预后价值。简单来说,这篇文章通过单细胞RNA测序技术,提供了基于微环境的额外预后信息,并可能有助于预测治疗反应和揭示未来治疗方法的潜在目标细胞群。

虽然原文提供了代码,但是作者之前用到的很多生信包和软件已经过时很久了,包括Seurat都已经更新到V5了,所以今天就用自己的方法来复现一下文章中的fig.1中的图。

Fig.1

一、准备安装包和设置一些画图参数

library(Seurat)

library(dplyr)

library(reticulate)

library(sctransform)

library(cowplot)

library(ggplot2)

library(viridis)

library(tidyr)

library(magrittr)

library(reshape2)

library(readxl)

library(readr)

library(stringr)

# 后续绘制的 ggplot2 图形都应用 cowplot 主题

theme_set(theme_cowplot())

#color scheme

use_colors <- c(Tumor ="brown2",# 肿瘤的颜色为棕色系

Normal ="deepskyblue2",# 正常的颜色为深天蓝色系

G1 ="#46ACC8",# 细胞周期G1期的颜色为亮蓝色

G2M ="#E58601",# 细胞周期G2/M期的颜色为橙色

S ="#B40F20",# 细胞周期S期的颜色为深红色

Epithelial ="seagreen",# 上皮细胞的颜色为海洋绿

Immune ="darkgoldenrod2",# 免疫细胞的颜色为深金黄色

Stromal ="steelblue",# 间质细胞的颜色为钢蓝色

p018 ="#E2D200",# p018标签的颜色为柠檬黄

p019 ="#46ACC8",# p019标签的颜色为亮蓝色

p023 ="#E58601",# p023标签的颜色为橙色

p024 ="#B40F20",# p024标签的颜色为深红色

p027 ="#0B775E",# p027标签的颜色为深绿色

p028 ="#E1BD6D",# p028标签的颜色为浅棕色

p029 ="#35274A",# p029标签的颜色为深紫色

p030 ="#F2300F",# p030标签的颜色为鲜红色

p031 ="#7294D4",# p031标签的颜色为浅蓝色

p032 ="#5B1A18",# p032标签的颜色为深棕色

p033 ="#9C964A",# p033标签的颜色为淡黄色

p034 ="#FD6467"# p034标签的颜色为粉红色)

二、数据加载和质控(到这之前基本都是用的原文代码)

setwd("~/Data1/德国单细胞文章复现/01_初步处理/")

samples <- read_excel("../data/metadata/patients_metadata.xlsx", range = cell_cols("A:A")) %>% .$sample_id

for(iinseq_along(samples)){

# 读取数据

assign(paste0("scs_data", i), Read10X(data.dir = paste0("../data/cellranger/", samples[i],"/filtered_feature_bc_matrix")))

}

### create seurat objects from cellranger files

# 使用for循环遍历样本列表中的每个样本

for(iinseq_along(samples)) {

assign(paste0("seu_obj", i), CreateSeuratObject(

counts = eval(parse(text = paste0("scs_data", i))),# 将表达矩阵数据作为counts参数传入,使用eval和parse函数动态获取对应的变量

project = samples[i],# 将项目名称作为project参数传入

min.cells =3# 设置最小细胞数阈值为3,用于过滤低质量细胞  

))

}

### merge data sets 合并多个Seurat对象为一个新的Seurat对象

seu_obj <- merge(seu_obj1,# 第一个原始Seurat对象

y = c(seu_obj2, seu_obj3, seu_obj4, seu_obj5, seu_obj6, seu_obj7, seu_obj8, seu_obj9, seu_obj10, seu_obj11, seu_obj12, seu_obj13, seu_obj14, seu_obj15, seu_obj16, seu_obj17, seu_obj18, seu_obj19, seu_obj20),add.cell.ids = samples,  project ="lung")

# add.cell.ids参数添加样本标识,最后设置项目名称为"lung"

seu_obj <- JoinLayers(seu_obj)

### calculate mitochondrial, hemoglobin and ribosomal gene counts

# 计算并添加MT基因组比例到Seurat对象中

seu_obj <- PercentageFeatureSet(seu_obj, pattern ="^MT-", col.name ="pMT")

# 计算并添加HBA/HBB基因组比例到Seurat对象中

seu_obj <- PercentageFeatureSet(seu_obj, pattern ="^HBA|^HBB", col.name ="pHB")

# 计算并添加RPS/RPL基因组比例到Seurat对象中,核糖体蛋白基因

seu_obj <- PercentageFeatureSet(seu_obj, pattern ="^RPS|^RPL", col.name ="pRP")

#### Data Filtering ####

## Before filtering

seu_obj_unfiltered <- seu_obj

qc_std_plot(seu_obj_unfiltered)

####After filtering####

seu_obj_unfiltered <- readRDS("seurat_objects/all_unfiltered.RDS")

#过滤

seu_obj <- subset(seu_obj_unfiltered, subset = nFeature_RNA > nFeature_lower & nFeature_RNA < nFeature_upper & nCount_RNA > nCount_lower & nCount_RNA < nCount_upper & pMT < pMT_upper & pHB < pHB_upper)

SuppFig1A,Before filtering SuppFig1B

三、 Data normalization/harmony去批次 /降维聚类

seu_obj<- NormalizeData(seu_obj, normalization.method="LogNormalize",scale.factor=1e4)  

seu_obj<- FindVariableFeatures(seu_obj) 

#?FindVariableFeatures

seu_obj<- ScaleData(seu_obj)

#?ScaleData

seu_obj<- RunPCA(seu_obj)

#?RunPCA(挑选显著PC,最好run一下,避免引入噪音)

ElbowPlot(seu_obj,ndims=50) #### 

#Seurat 5版本有断层数据需要连接下

# seu_obj <- JoinLayers(seu_obj)

library(harmony)  

###Harmony

options(repr.plot.height=2.5, repr.plot.width = 6)

seu_obj_harmony<- seu_obj %>%

RunHarmony(group.by.vars="orig.ident", plot_convergence = TRUE)  

#### Dimensionality reduction降维聚类####

seu_obj_harmony<- FindNeighbors(seu_obj_harmony, reduction = "harmony",dims=1:15) 

seu_obj_harmony<- FindClusters(seu_obj_harmony, resolution = 0.2)

seu_obj_harmony<- RunUMAP(seu_obj_harmony,  dims = 1:15, reduction="harmony")

print(DimPlot(seu_obj_harmony, reduction = "umap",label = T) + labs(title = paste0("resolution: ", 0.2)))

harmony去批次后的降维聚类图是不是和文献中的UMAP图形状大致吻合

四、Main cell type annotation/大类细胞注释

mainmarkers<c("PECAM1","VWF","ACTA2","JCHAIN","MS4A1","PTPRC","CD68","KIT","EPCAM","CDH1","KRT7","KRT19")

DotPlot(seu_obj_harmony, features = mainmarkers, group.by ="RNA_snn_res.0.2") +  

coord_flip() +  

 scale_color_viridis()

ggsave2("DotPlot_mainmarkers.png", path ="output2/annotation", width =30, height =8, units ="cm")

DimPlot(seu_obj_harmony, group.by ="RNA_snn_res.0.2", label = T, label.size =5)

ggsave2("DimPlot_all_clusters.png", path ="output/annotation", width =20, height =20, units ="cm")

Idents(seu_obj_harmony) <- seu_obj_harmony$RNA_snn_res.0.2

#这里三个分成大类免疫、上皮、基质

# saveRDS(seu_obj, file = "seurat_objects/SCT_snn_res.0.085.RDS")

# seu_obj<- readRDS("seurat_objects/SCT_snn_res.0.085.RDS")

annotation_curated_main <-read_excel("../data/curated_annotation/curated_annotation_main改_harmony.xlsx")

new_ids_main <- annotation_curated_main$main_cell_type

names(new_ids_main) <- levels(seu_obj_harmony)

seu_obj_harmony <- RenameIdents(seu_obj_harmony, new_ids_main)

seu_obj_harmony@meta.data$main_cell_type<- Idents(seu_obj_harmony)

DimPlot(seu_obj_harmony, group.by ="main_cell_type")

DimPlot(seu_obj_harmony, group.by ="RNA_snn_res.0.2",label = T)

# Add metadata

metatable <- read_excel("../data/metadata/patients_metadata.xlsx")

metadata <- FetchData(seu_obj_harmony,"orig.ident")

metadata$cell_id<- rownames(metadata)

metadata$sample_id<- metadata$orig.ident

metadata <- left_join(x = metadata, y = metatable, by ="sample_id")

rownames(metadata) <- metadata$cell_id

seu_obj_harmony <- AddMetaData(seu_obj_harmony, metadata = metadata)

我用harmony去批次整合的图 文献fig.1D的原图(肉眼可以看到细胞形状和细胞数量大致相同)

五、Cell cycle scoring/细胞周期评分

### add cell cycle, cc.genes loaded with Seurat

s.genes <- cc.genes$s.genes

g2m.genes <- cc.genes$g2m.genes

score_cc <-function(seu_obj_harmony){  

seu_obj_harmony <- CellCycleScoring(seu_obj_harmony, s.genes, g2m.genes)  

seu_obj_harmony@meta.data$CC.Diff <- seu_obj_harmony@meta.data$S.Score - seu_obj_harmony@meta.data$G2M.Score

return(seu_obj_harmony)

}

seu_obj_harmony <- score_cc(seu_obj_harmony)

FeatureScatter(seu_obj_harmony,"G2M.Score","S.Score", group.by ="Phase") +

coord_fixed(ratio =1)

可以看到大部分细胞周期评分都很低可以不用去除Cell cycle相关基因

六、 plots for figure 1

DimPlot(seu_obj_harmony,group.by="tissue_type", cols = use_colors)

ggsave2("Fig1B.png", path ="../results", width =15, height =15, units ="cm")

DimPlot(seu_obj_harmony,group.by="patient_id", cols = use_colors, pt.size =1)

ggsave2("Fig1C.png", path ="../results", width =15, height =15, units ="cm")

DimPlot(seu_obj_harmony,group.by="main_cell_type", cols = use_colors, pt.size =1)

ggsave2("Fig1D_umap.png", path ="../results", width =15, height =15, units ="cm")

cell_types <- FetchData(seu_obj_harmony, vars = c("sample_id","main_cell_type","tissue_type")) %>%

mutate(main_cell_type = factor(main_cell_type, levels = c("Stromal","Immune","Epithelial"))) %>%

mutate(sample_id = factor(sample_id, levels = rev(c("p018t","p019t","p023t","p024t","p027t","p028t","p030t","p031t","p032t","p033t","p034t","p018n","p019n","p027n","p028n","p029n","p030n","p031n","p032n","p033n","p034n"))))

ggplot(data = cell_types) + 

geom_bar(mapping = aes(x = sample_id, fill = main_cell_type, ), position ="fill", width =0.75) + 

scale_fill_manual(values = use_colors) +  

coord_flip()

ggsave2("Fig1D_barplot.pdf", path ="../results", width =15, height =30, units ="cm")

remove(seu_obj_harmony)

Fig1B复现 Fig1C复现 Fig1D复现 Fig1D细胞比例图复现

至此,就把文献中fig1和figS1的图复现完成啦!完整代码请移步👸号

敬请期待此文献后续的复现内容!

上一篇下一篇

猜你喜欢

热点阅读