深度学习基石程序员架构算法设计模式和编程理论

线性回归背后的数学

2017-01-29  本文已影响788人  小聪明李良才

本文是YouTube上视频How to Do Linear Regression the Right Way笔记

假设我们有一堆数据,并且他们是线性相关的,那我们怎么找出最合适的那条直线呢?

此处关键是定义什么是最合适?可以通过每个点到直线的距离来定义整个合适,如图:

如果我们此时放一个弹珠到碗里,最终弹珠停下来的点就是我们要找的最佳点,现在我们没有弹珠,我们要怎么找到这个最佳点呢?这就要讲到偏导数(partial derivatives)的概念了,以前大学里学偏导数的是时候一直不明白为什么叫偏导,直到最近看到英文:partial derivatives才明白,我们来看图:

图中的函数f是一个表面,如果我们固定住y,则是一个曲线,如图中绿色的线,此时我们在计算点(a,b,f(a,b))在绿色线上的斜率,就可以得到沿着x方向的斜率了,同样的我们固定x,就可以得到y方向的斜率,这样子解释,英文partial derivatives就很形象了,即计算的部分的斜率,合在一起才是曲面上这个点相切的一个平面。

由此我们就有了偏导数:

根据上面的这些我们就有了最后的代码:https://github.com/llSourcell/linear_regression_live

一些视频的中的词汇记录:

back of your hand:了如指掌

gradient descent:梯度下降

partial derivatives:偏导数

calculus:微积分

correlation:相关性

intercept:截断

slope:斜率

Convergence:收敛

slope formula:斜率公式

magnitude:大小

with respect to:关于

tangent:切线

好书推荐:Machine Learning and Probabilistic Approach

推荐资源

More learning resources:
http://mathinsight.org/image/partial_...
http://www.dummies.com/education/math...
https://spin.atomicobject.com/2014/06...
https://www.quora.com/What-is-an-intu...
http://machinelearningmastery.com/gra...

上一篇下一篇

猜你喜欢

热点阅读