2020-09-14 DiceLoss

2020-09-14  本文已影响0人  Joyner2018

!/usr/bin/env python

-- coding: utf-8 --

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

def make_one_hot(input, num_classes):
"""Convert class index tensor to one hot encoding tensor.
Args:
input: A tensor of shape [N, 1, *]
num_classes: An int of number of class
Returns:
A tensor of shape [N, num_classes, *]
"""
shape = np.array(input.shape)
shape[1] = num_classes
shape = tuple(shape)
result = torch.zeros(shape)
result = result.scatter_(1, input.cpu(), 1)

return result

class BinaryDiceLoss(nn.Module):
"""Dice loss of binary class
Args:
smooth: A float number to smooth loss, and avoid NaN error, default: 1
p: Denominator value: \sum{x^p} + \sum{y^p}, default: 2
predict: A tensor of shape [N, *]
target: A tensor of shape same with predict
reduction: Reduction method to apply, return mean over batch if 'mean',
return sum if 'sum', return a tensor of shape [N,] if 'none'
Returns:
Loss tensor according to arg reduction
Raise:
Exception if unexpected reduction
"""
def init(self, smooth=1, p=2, reduction='mean'):
super(BinaryDiceLoss, self).init()
self.smooth = smooth
self.p = p
self.reduction = reduction

def forward(self, predict, target):
    assert predict.shape[0] == target.shape[0], "predict & target batch size don't match"
    predict = predict.contiguous().view(predict.shape[0], -1)
    target = target.contiguous().view(target.shape[0], -1)

    num = torch.sum(torch.mul(predict, target), dim=1) + self.smooth
    den = torch.sum(predict.pow(self.p) + target.pow(self.p), dim=1) + self.smooth

    loss = 1 - num / den

    if self.reduction == 'mean':
        return loss.mean()
    elif self.reduction == 'sum':
        return loss.sum()
    elif self.reduction == 'none':
        return loss
    else:
        raise Exception('Unexpected reduction {}'.format(self.reduction))

class DiceLoss(nn.Module):
"""Dice loss, need one hot encode input
Args:
weight: An array of shape [num_classes,]
ignore_index: class index to ignore
predict: A tensor of shape [N, C, *]
target: A tensor of same shape with predict
other args pass to BinaryDiceLoss
Return:
same as BinaryDiceLoss
"""
def init(self, weight=None, ignore_index=None, **kwargs):
super(DiceLoss, self).init()
self.kwargs = kwargs
self.weight = weight
self.ignore_index = ignore_index

def forward(self, predict, target):
    assert predict.shape == target.shape, 'predict & target shape do not match'
    dice = BinaryDiceLoss(**self.kwargs)
    total_loss = 0
    predict = F.softmax(predict, dim=1)

    for i in range(target.shape[1]):
        if i != self.ignore_index:
            dice_loss = dice(predict[:, i], target[:, i])
            if self.weight is not None:
                assert self.weight.shape[0] == target.shape[1], \
                    'Expect weight shape [{}], get[{}]'.format(target.shape[1], self.weight.shape[0])
                dice_loss *= self.weights[i]
            total_loss += dice_loss

    return total_loss/target.shape[1]
上一篇下一篇

猜你喜欢

热点阅读