03 Types of Learning

2018-09-04  本文已影响17人  心智万花筒

Output Space/Data Label/Protocol/Input Space四个维度介绍常见机器学习类型,见详细课件

Output Space

Y的维度考虑,不同的输出空间,对应不同的机器学习算法。

Binary Classification

二分类问题,输出空间为Y=\{−1, +1\}。常见例子比如:

是极其重要的一类问题:

Core and important problem with many tools as building block of other tools.

Multiclass Classification

多分类问题,输出空间为Y=\{1,2,\dots, K\},二分类是K=2时候的特例。常见例子比如:

Regression

回归问题,输出空间Y=R或者Y=[lower, upper] \in R,对应bounded regression。常见的例子比如:

统计学中被广泛研究:

Also core and important with many ‘statistical’ tools as building block of other tools.

Structured Learning

结构化学习,常见例子比如:

Huge multiclass classification problem (structure = hyperclass) without ‘explicit’ class definition.

Data Label

从data label y_n的有无、多少、形式划分:

Supervised Learning

Supervised learning: every x_n comes with corresponding y_n.

比如二分类、多分类问题,都是典型的监督学习。

Unsupervised Learning

Unsupervised learning: diverse, with possibly very different performance goals.

无监督学习形式也很丰富,常见的比如:

Semi-supervised Learning

Semi-supervised learning: leverage unlabeled data to avoid ‘expensive’ labeling.

常见的比如:

详细解释见Semi-supervised learning

Reinforcement Learning

Reinforcement: learn with ‘partial/implicit information’ (often sequentially).

样本形式(x_n, y_n, goodness)常见的比如:

Different Protocol

不同Protocol对应不同Learning Philosophy:

对应的训练数据也不相同:

Batch Learning

一次性从所有已知数据中学习。

Batch supervised multiclass classification: learn from all known data.

Online Learning

序列地接受数据,然后更新模型。

Online: hypothesis ‘improves’ through receiving data instances sequentially

比如online spam filter, which sequentially:

  1. observe an email x_t
  2. predict spam status with current g_t(x_t)
  3. receive ‘desired label’ y_t from user, and then update g_t with (x_t, y_t)

PLA can be easily adapted to online protocol.

Active Learning

当模型没有把握的时候,把问题交给用户,从而获取高质量样本。

Active: improve hypothesis with fewer labels (hopefully) by asking questions strategically

Different Input Space

根据输入空间的含义划分。

Concrete Features

Concrete features: each dimension of X \in R^d represents ‘sophisticated physical meaning’.

常见的比如:

这些具体特征,有明确的含义,可解释性很强,同时easy for ML

Raw Features

Raw features: often need human or machines to convert to concrete ones.

比如image pixels, speech signal等场景。

Abstract Features

Abstract: again need feature conversion/extraction/construction.

比如一些ID特征:

上一篇下一篇

猜你喜欢

热点阅读