通俗易懂地理解机器学习理论中的凸优化
2019-01-18 本文已影响63人
TOMOCAT
写在前头
凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。一般形式为:

虽然凸优化的条件比较苛刻,但仍然在机器学习参数最优化领域有广泛的应用。凸优化问题的优势体现在:
1、凸优化问题的局部最优解就是全局最优解
2、很多非凸问题都可以被等价转化为凸优化问题或者被近似为凸优化问题
3、凸优化问题的研究较为成熟,当一个具体被归为一个凸优化问题,基本可以确定该问题是可被求解的
相关理论
凸集
定义:

几何意义:

凸函数
定义:

几何意义:

凸函数的一阶充要条件:


凸函数的二阶充要条件:

凸优化问题
定义:

常见的凸优化问题
线性规划(LP,Linear Program)
二次规划(QP,Quadratic Program)
二次约束的二次规划(QCCP,Quadratically Contrained Quadratic Program)
半正定规划(SDP,Semidefinite Program)
机器学习中的凸优化
凸优化的过程

凸优化的求解过程可以概括为:找到一个点列使得函数值一直减少,直到达到停止的条件或某个最小值。
数学描述

