iOS alloc原理分析

2020-09-06  本文已影响0人  ugpass

首先自定义类LSPerson继承自NSObject

创建LSPerson对象
LSPerson *p1 = [LSPerson alloc];

断点在该行,control + step into进入断点即可看到调用objc_alloc函数,在ojbc源码中源码如下

callAlloc源码
// Call [cls alloc] or [cls allocWithZone:nil], with appropriate 
// shortcutting optimizations.
static ALWAYS_INLINE id
callAlloc(Class cls, bool checkNil, bool allocWithZone=false)
{
#if __OBJC2__
    if (slowpath(checkNil && !cls)) return nil;
    if (fastpath(!cls->ISA()->hasCustomAWZ())) {
        return _objc_rootAllocWithZone(cls, nil);
    }
#endif

    // No shortcuts available.
    if (allocWithZone) {
        return ((id(*)(id, SEL, struct _NSZone *))objc_msgSend)(cls, @selector(allocWithZone:), nil);
    }
    return ((id(*)(id, SEL))objc_msgSend)(cls, @selector(alloc));
}

分析alloc流程如下:

alloc流程

其中slowpathfastpath为宏定义,__builtin_expect用于编译器对代码优化,减少指令跳转。这个指令是gcc引入的,作用是"允许程序员将最有可能执行的分支告诉编译器"

#define fastpath(x) (__builtin_expect(bool(x), 1))
#define slowpath(x) (__builtin_expect(bool(x), 0))

!cls->ISA()->hasCustomAWZ()判断该类是否有自定义的allocWithZone实现

  1. instanceSize源码
size_t instanceSize(size_t extraBytes) const {
        if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
            return cache.fastInstanceSize(extraBytes);
        }

        size_t size = alignedInstanceSize() + extraBytes;
        // CF requires all objects be at least 16 bytes.
        if (size < 16) size = 16;
        return size;
    }

根据调试信息从缓存中读取所需开辟空间大小cache.fastInstanceSize

fastInstanceSize源码

size_t fastInstanceSize(size_t extra) const
    {
        ASSERT(hasFastInstanceSize(extra));

        if (__builtin_constant_p(extra) && extra == 0) {
            return _flags & FAST_CACHE_ALLOC_MASK16;
        } else {
            size_t size = _flags & FAST_CACHE_ALLOC_MASK;
            // remove the FAST_CACHE_ALLOC_DELTA16 that was added
            // by setFastInstanceSize
            return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
        }
    }

__builtin_constant_p(exp)用于在编译器判断exp是否为常量,如果是则函数的值为1,否则为0。此处exp为非常量

align16源码

static inline size_t align16(size_t x) {
    return (x + size_t(15)) & ~size_t(15);
}

align16函数对变量x进行内存对齐,计算后为16的倍数,该算法是对x的二进制的后四位进行清零运算

字节对齐算法示意图
  1. calloc 返回开辟内存的地址指针

  2. initInstanceIsa源码 做了一件事即初始化isa initIsa

inline void 
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
    ASSERT(!cls->instancesRequireRawIsa());
    ASSERT(hasCxxDtor == cls->hasCxxDtor());

    initIsa(cls, true, hasCxxDtor);
}

initIsa源码

inline void 
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor) 
{ 
    ASSERT(!isTaggedPointer()); 
    
    if (!nonpointer) {
        isa = isa_t((uintptr_t)cls);
    } else {
        ASSERT(!DisableNonpointerIsa);
        ASSERT(!cls->instancesRequireRawIsa());

        isa_t newisa(0);

#if SUPPORT_INDEXED_ISA
        ASSERT(cls->classArrayIndex() > 0);
        newisa.bits = ISA_INDEX_MAGIC_VALUE;
        // isa.magic is part of ISA_MAGIC_VALUE
        // isa.nonpointer is part of ISA_MAGIC_VALUE
        newisa.has_cxx_dtor = hasCxxDtor;
        newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
        newisa.bits = ISA_MAGIC_VALUE;
        // isa.magic is part of ISA_MAGIC_VALUE
        // isa.nonpointer is part of ISA_MAGIC_VALUE
        newisa.has_cxx_dtor = hasCxxDtor;
        newisa.shiftcls = (uintptr_t)cls >> 3;
#endif

        // This write must be performed in a single store in some cases
        // (for example when realizing a class because other threads
        // may simultaneously try to use the class).
        // fixme use atomics here to guarantee single-store and to
        // guarantee memory order w.r.t. the class index table
        // ...but not too atomic because we don't want to hurt instantiation
        isa = newisa;
    }
}

自定义类非taggedPointer,且nonpointer为true,走到else分支,初始化isa_t newisa结构体

上一篇 下一篇

猜你喜欢

热点阅读