类加载

2020-07-28  本文已影响0人  暴躁的小豆子

上篇说了,app加载的流程,接下来我们看看 objc_init,从苹果开发文档中下载源码objc4,这里是objc4-779.1版本

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    //读取影响运行的环境变量,如果需要,还可以打印环境变量帮助
    environ_init();
    //关于线程key的绑定--比如每线程数据的析构函数
    tls_init();
    //运行系统的C++静态构造函数,在dyld调用我们的静态构造函数之前,libc会调用_objc_init(),所以我们必须自己做
    static_init();
    runtime_init();
     //初始化异常处理系统,比如注册异常的回调函数,来监控异常
    exception_init();
    cache_init();
    _imp_implementationWithBlock_init();
 //仅供objc运行时使用,注册处理程序,以便在映射、取消映射和初始化objc镜像文件时调用
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);

#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}

我们来说一下_dyld_objc_notify_register,其他你也可以下载源码看一下,我们在objc中注册函数回调,那必然会有调用者,这里调用者大家可能已经猜到,对,就是dyld这个动态链接库,在dyld库中搜索_dyld_objc_notify_register:

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;
...
}

上面的方法保存了三个函数指针,其作用是为了在某一时刻调用,根据源码分析

map_images(unsigned count, const char * const paths[],
           const struct mach_header * const mhdrs[])
{
    mutex_locker_t lock(runtimeLock);
    return map_images_nolock(count, paths, mhdrs);
}
void 
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                  const struct mach_header * const mhdrs[]){
...
        _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);

...
}

从上面代码可以看出经过一系列的函数调用栈,会调用_read_images,我们点进去看看

void _read_images{
    
    //第一次进来 创建表   所有类的表 实现的+未实现的 gdb_objc_realized_classes
    //之前的版本 allocatedClasses 表也是在这里创建的  这个版本是在objc_init中runtime_init()中创建的
    //gdb_objc_realized_classes 包含 allocatedClasses   allocatedClasses是以分配的类 元类
    //1
    if (!doneOnce) {}
    //2 方法编号处理
    for (EACH_HEADER) {}
    //3 类处理
    for (i = 0; i < count; i++) {}
    //4 协议处理
    for (EACH_HEADER) {}
    //5 分类处理
    for (EACH_HEADER) {}
    //6 非加载类处理
    for (EACH_HEADER) {}
    //7 待处理的类
    if (resolvedFutureClasses) {}
    
}

这里直接看加载非懒加载类

void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
    //加载非懒加载类
    for (EACH_HEADER) {
        classref_t const *classlist = 
            _getObjc2NonlazyClassList(hi, &count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            if (!cls) continue;

            addClassTableEntry(cls);

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }            
            realizeClassWithoutSwift(cls,nil);
            //添加一行
            _objc_inform("non lazy class realized: %s",cls->nameForLogging());
        }
    }
}

addClassTableEntry(cls) 是类及其元类添加到allocatedClasses这张表中
realizeClassWithoutSwift函数太长,我做了一次修剪,留下主要流程:

static Class realizeClassWithoutSwift(Class cls, Class previously)
{

    const class_ro_t *ro;
    class_rw_t *rw;
    Class supercls;
    Class metacls;
    bool isMeta;

    /*省略*/
    ro = (const class_ro_t *)cls->data();
    rw = (class_rw_t *)calloc(sizeof(class_rw_t), 1);
    rw->ro = ro;
    rw->flags = RW_REALIZED|RW_REALIZING;
    cls->setData(rw);
    
   /*省略*/
   
    supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);

     /*省略*/

    // Update superclass and metaclass in case of remapping
    cls->superclass = supercls;
    cls->initClassIsa(metacls);
    
     /*省略*/
    
    // Set fastInstanceSize if it wasn't set already.
    cls->setInstanceSize(ro->instanceSize);

    /*省略*/

    // Connect this class to its superclass's subclass lists
    if (supercls) {
        addSubclass(supercls, cls);
    } else {
        addRootClass(cls);
    }

    // Attach categories
    methodizeClass(cls, previously);

    return cls;
}

先说函数头注释

第11~15
1 给rw分配内存
2 把ro赋给rw局部变量
3 赋给类的rw
第19~20行,沿着类的继承链以及元类的继承链递归调用realizeClass()函数,使继承链中的所有父类都完成上述操作。
第25~26行,给当前类的superclass成员赋值(儿子认爹),然后初始化类的isa成员。
第31行,将ro中记录的实例大小信息写入rw中。
第37行,将当前class添加为父类的subclass(爹认儿子),到这里父子相认了。
第43行,开始处理类的方法列表,最后返回类的结构体实例。

前面是从镜像读取ro数据,并将类架子填充好,下面开始为类赋值methodizeClass

   static void methodizeClass(Class cls, Class previously)
{

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data();
    auto ro = rw->ro;
    // Install methods and properties that the class implements itself.
    method_list_t *list = ro->baseMethods();
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));
        rw->methods.attachLists(&list, 1);
    }

    property_list_t *proplist = ro->baseProperties;
    if (proplist) {
        rw->properties.attachLists(&proplist, 1);
    }

    protocol_list_t *protolist = ro->baseProtocols;
    if (protolist) {
        rw->protocols.attachLists(&protolist, 1);
    }

    // Root classes get bonus method implementations if they don't have
    // them already. These apply before category replacements.
    if (cls->isRootMetaclass()) {
        // root metaclass
        addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
    }

    // Attach categories.
    if (previously) {
        if (isMeta) {
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_METACLASS);
        } else {
            // When a class relocates, categories with class methods
            // may be registered on the class itself rather than on
            // the metaclass. Tell attachToClass to look for those.
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_CLASS_AND_METACLASS);
        }
    }
    objc::unattachedCategories.attachToClass(cls, cls,
                                             isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
}

添加原理

void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;

    if (hasArray()) {
        // many lists -> many lists
        uint32_t oldCount = array()->count;
        uint32_t newCount = oldCount + addedCount;
        setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
        array()->count = newCount;
        memmove(array()->lists + addedCount, array()->lists, 
                oldCount * sizeof(array()->lists[0]));
        memcpy(array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
    else if (!list  &&  addedCount == 1) {
        // 0 lists -> 1 list
        list = addedLists[0];
    } 
    else {
        // 1 list -> many lists
        List* oldList = list;
        uint32_t oldCount = oldList ? 1 : 0;
        uint32_t newCount = oldCount + addedCount;
        setArray((array_t *)malloc(array_t::byteSize(newCount)));
        array()->count = newCount;
        if (oldList) array()->lists[addedCount] = oldList;
        memcpy(array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
}

realloc()函数会在原先内存空间的基础上,继续向后开辟(扩容时),如果后面的内存够用,则扩容成功,仍然返回原内存空间的起始地址;如果后面的连续内存空间不够,则在堆上重新寻找开辟一块newCount大小的空间,并将原空间的内容copy过去,返回新开辟的空间地址。

总结

load_images

下面说第二个函数 load_images

load_images(const char *path __unused, const struct mach_header *mh)
{
    // Return without taking locks if there are no +load methods here.
    if (!hasLoadMethods((const headerType *)mh)) return;

    recursive_mutex_locker_t lock(loadMethodLock);

    // Discover load methods
    {
        mutex_locker_t lock2(runtimeLock);
        prepare_load_methods((const headerType *)mh);
    }

    // Call +load methods (without runtimeLock - re-entrant)
    call_load_methods();
}

void prepare_load_methods(const headerType *mhdr)
{
    size_t count, i;

    runtimeLock.assertLocked();

    classref_t const *classlist = 
        _getObjc2NonlazyClassList(mhdr, &count);
    for (i = 0; i < count; i++) {
        schedule_class_load(remapClass(classlist[i]));
    }

    category_t * const *categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
    for (i = 0; i < count; i++) {
        category_t *cat = categorylist[i];
        Class cls = remapClass(cat->cls);
        if (!cls) continue;  // category for ignored weak-linked class
        if (cls->isSwiftStable()) {
            _objc_fatal("Swift class extensions and categories on Swift "
                        "classes are not allowed to have +load methods");
        }
        realizeClassWithoutSwift(cls, nil);
        ASSERT(cls->ISA()->isRealized());
        add_category_to_loadable_list(cat);
    }
}

第7~11行
遍历类的列表,递归调用,保证父类先调用load方法,然后依次添加到loadable_classes
第13~行
遍历分类列表,确定初始化过,添加到loadable_categories

struct loadable_class {
    Class cls;  // may be nil
    IMP method;
};

struct loadable_category {
    Category cat;  // may be nil
    IMP method;
};

添加到两个数组中的都是各自类型的结构体

来看一下添加的方法,分类跟类的方法类似,拿类的添加方法来看

void add_class_to_loadable_list(Class cls)
{
    IMP method;

    loadMethodLock.assertLocked();

    method = cls->getLoadMethod();
    if (!method) return;  // Don't bother if cls has no +load method
    
    if (PrintLoading) {
        _objc_inform("LOAD: class '%s' scheduled for +load", 
                     cls->nameForLogging());
    }
    
    if (loadable_classes_used == loadable_classes_allocated) {
        loadable_classes_allocated = loadable_classes_allocated*2 + 16;
        loadable_classes = (struct loadable_class *)
            realloc(loadable_classes,
                              loadable_classes_allocated *
                              sizeof(struct loadable_class));
    }
    
    loadable_classes[loadable_classes_used].cls = cls;
    loadable_classes[loadable_classes_used].method = method;
    loadable_classes_used++;
}

首先判断类中是否有load方法,没有就返回,然后2倍扩容来创建loadable_classes数组,将类跟方法包装成结构体存入loadable_classes

2 call_load_methods 调用阶段

void call_load_methods(void)
{
    static bool loading = NO;
    bool more_categories;

    loadMethodLock.assertLocked();

    // Re-entrant calls do nothing; the outermost call will finish the job.
    if (loading) return;
    loading = YES;

    void *pool = objc_autoreleasePoolPush();

    do {
        // 1. Repeatedly call class +loads until there aren't any more
        while (loadable_classes_used > 0) {
            call_class_loads();
        }

        // 2. Call category +loads ONCE
        more_categories = call_category_loads();

        // 3. Run more +loads if there are classes OR more untried categories
    } while (loadable_classes_used > 0  ||  more_categories);

    objc_autoreleasePoolPop(pool);

    loading = NO;
}

call_class_loads()跟 call_category_loads() 调用方法类似都是遍历取出方法,然后执行。

 static void call_class_loads(void)
{
    int i;
    
    // Detach current loadable list.
    struct loadable_class *classes = loadable_classes;
    int used = loadable_classes_used;
    loadable_classes = nil;
    loadable_classes_allocated = 0;
    loadable_classes_used = 0;
    
    // Call all +loads for the detached list.
    for (i = 0; i < used; i++) {
        Class cls = classes[i].cls;
        load_method_t load_method = (load_method_t)classes[i].method;
        if (!cls) continue; 

        if (PrintLoading) {
            _objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
        }
        (*load_method)(cls, @selector(load));
    }
    
    // Destroy the detached list.
    if (classes) free(classes);
}
上一篇下一篇

猜你喜欢

热点阅读