《利用Python进行数据分析·第2版》第8章 数据规整:聚合、
第1章 准备工作
第2章 Python语法基础,IPython和Jupyter
第3章 Python的数据结构、函数和文件
第4章 NumPy基础:数组和矢量计算
第5章 pandas入门
第6章 数据加载、存储与文件格式
第7章 数据清洗和准备
第8章 数据规整:聚合、合并和重塑
第9章 绘图和可视化
第10章 数据聚合与分组运算
第11章 时间序列
第12章 pandas高级应用
第13章 Python建模库介绍
第14章 数据分析案例
附录A NumPy高级应用
附录B 更多关于IPython的内容(完)
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析。本章关注可以聚合、合并、重塑数据的方法。
首先,我会介绍pandas的层次化索引,它广泛用于以上操作。然后,我深入介绍了一些特殊的数据操作。在第14章,你可以看到这些工具的多种应用。
8.1 层次化索引
层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引:
In [9]: data = pd.Series(np.random.randn(9),
...: index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
...: [1, 2, 3, 1, 3, 1, 2, 2, 3]])
In [10]: data
Out[10]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”:
In [11]: data.index
Out[11]:
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])
对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:
In [12]: data['b']
Out[12]:
1 -0.555730
3 1.965781
dtype: float64
In [13]: data['b':'c']
Out[13]:
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
dtype: float64
In [14]: data.loc[['b', 'd']]
Out[14]:
b 1 -0.555730
3 1.965781
d 2 0.281746
3 0.769023
dtype: float64
有时甚至还可以在“内层”中进行选取:
In [15]: data.loc[:, 2]
Out[15]:
a 0.478943
c 0.092908
d 0.281746
dtype: float64
层次化索引在数据重塑和基于分组的操作(如透视表生成)中扮演着重要的角色。例如,可以通过unstack方法将这段数据重新安排到一个DataFrame中:
In [16]: data.unstack()
Out[16]:
1 2 3
a -0.204708 0.478943 -0.519439
b -0.555730 NaN 1.965781
c 1.393406 0.092908 NaN
d NaN 0.281746 0.769023
unstack的逆运算是stack:
In [17]: data.unstack().stack()
Out[17]:
a 1 -0.204708
2 0.478943
3 -0.519439
b 1 -0.555730
3 1.965781
c 1 1.393406
2 0.092908
d 2 0.281746
3 0.769023
dtype: float64
stack和unstack将在本章后面详细讲解。
对于一个DataFrame,每条轴都可以有分层索引:
In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
....: columns=[['Ohio', 'Ohio', 'Colorado'],
....: ['Green', 'Red', 'Green']])
In [19]: frame
Out[19]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中:
In [20]: frame.index.names = ['key1', 'key2']
In [21]: frame.columns.names = ['state', 'color']
In [22]: frame
Out[22]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
注意:小心区分索引名state、color与行标签。
有了部分列索引,因此可以轻松选取列分组:
In [23]: frame['Ohio']
Out[23]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10
可以单独创建MultiIndex然后复用。上面那个DataFrame中的(带有分级名称)列可以这样创建:
MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']],
names=['state', 'color'])
重排与分级排序
有时,你需要重新调整某条轴上各级别的顺序,或根据指定级别上的值对数据进行排序。swaplevel接受两个级别编号或名称,并返回一个互换了级别的新对象(但数据不会发生变化):
In [24]: frame.swaplevel('key1', 'key2')
Out[24]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了:
In [25]: frame.sort_index(level=1)
Out[25]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
b 1 6 7 8
a 2 3 4 5
b 2 9 10 11
In [26]: frame.swaplevel(0, 1).sort_index(level=0)
Out[26]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
b 6 7 8
2 a 3 4 5
b 9 10 11
根据级别汇总统计
许多对DataFrame和Series的描述和汇总统计都有一个level选项,它用于指定在某条轴上求和的级别。再以上面那个DataFrame为例,我们可以根据行或列上的级别来进行求和:
In [27]: frame.sum(level='key2')
Out[27]:
state Ohio Colorado
color Green Red Green
key2
1 6 8 10
2 12 14 16
In [28]: frame.sum(level='color', axis=1)
Out[28]:
color Green Red
key1 key2
a 1 2 1
2 8 4
b 1 14 7
2 20 10
这其实是利用了pandas的groupby功能,本书稍后将对其进行详细讲解。
使用DataFrame的列进行索引
人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。以下面这个DataFrame为例:
In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
....: 'c': ['one', 'one', 'one', 'two', 'two',
....: 'two', 'two'],
....: 'd': [0, 1, 2, 0, 1, 2, 3]})
In [30]: frame
Out[30]:
a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:
In [31]: frame2 = frame.set_index(['c', 'd'])
In [32]: frame2
Out[32]:
a b
c d
one 0 0 7
1 1 6
2 2 5
two 0 3 4
1 4 3
2 5 2
3 6 1
默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:
In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]:
a b c d
c d
one 0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
two 0 3 4 two 0
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3
reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面:
In [34]: frame2.reset_index()
Out[34]:
c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
8.2 合并数据集
pandas对象中的数据可以通过一些方式进行合并:
- pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来。SQL或其他关系型数据库的用户对此应该会比较熟悉,因为它实现的就是数据库的join操作。
- pandas.concat可以沿着一条轴将多个对象堆叠到一起。
- 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。
我将分别对它们进行讲解,并给出一些例子。本书剩余部分的示例中将经常用到它们。
数据库风格的DataFrame合并
数据集的合并(merge)或连接(join)运算是通过一个或多个键将行链接起来的。这些运算是关系型数据库(基于SQL)的核心。pandas的merge函数是对数据应用这些算法的主要切入点。
以一个简单的例子开始:
In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [37]: df1
Out[37]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
In [38]: df2
Out[38]:
data2 key
0 0 a
1 1 b
2 2 d
这是一种多对一的合并。df1中的数据有多个被标记为a和b的行,而df2中key列的每个值则仅对应一行。对这些对象调用merge即可得到:
In [39]: pd.merge(df1, df2)
Out[39]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
注意,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过,最好明确指定一下:
In [40]: pd.merge(df1, df2, on='key')
Out[40]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
如果两个对象的列名不同,也可以分别进行指定:
In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]:
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a
可能你已经注意到了,结果里面c和d以及与之相关的数据消失了。默认情况下,merge做的是“内连接”;结果中的键是交集。其他方式还有"left"、"right"以及"outer"。外连接求取的是键的并集,组合了左连接和右连接的效果:
In [44]: pd.merge(df1, df2, how='outer')
Out[44]:
data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0
表8-1对这些选项进行了总结。
表8-1 不同的连接类型多对多的合并有些不直观。看下面的例子:
In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
....: 'data1': range(6)})
In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
....: 'data2': range(5)})
In [47]: df1
Out[47]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 b
In [48]: df2
Out[48]:
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 d
In [49]: pd.merge(df1, df2, on='key', how='left')
Out[49]:
data1 key data2
0 0 b 1.0
1 0 b 3.0
2 1 b 1.0
3 1 b 3.0
4 2 a 0.0
5 2 a 2.0
6 3 c NaN
7 4 a 0.0
8 4 a 2.0
9 5 b 1.0
10 5 b 3.0
多对多连接产生的是行的笛卡尔积。由于左边的DataFrame有3个"b"行,右边的有2个,所以最终结果中就有6个"b"行。连接方式只影响出现在结果中的不同的键的值:
In [50]: pd.merge(df1, df2, how='inner')
Out[50]:
data1 key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 5 b 1
5 5 b 3
6 2 a 0
7 2 a 2
8 4 a 0
9 4 a 2
要根据多个键进行合并,传入一个由列名组成的列表即可:
In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
....: 'key2': ['one', 'two', 'one'],
....: 'lval': [1, 2, 3]})
In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
....: 'key2': ['one', 'one', 'one', 'two'],
....: 'rval': [4, 5, 6, 7]})
In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]:
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0
结果中会出现哪些键组合取决于所选的合并方式,你可以这样来理解:多个键形成一系列元组,并将其当做单个连接键(当然,实际上并不是这么回事)。
注意:在进行列-列连接时,DataFrame对象中的索引会被丢弃。
对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠的问题(查看前面介绍的重命名轴标签),但merge有一个更实用的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串:
In [54]: pd.merge(left, right, on='key1')
Out[54]:
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
In [55]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[55]:
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
merge的参数请参见表8-2。使用DataFrame的行索引合并是下一节的主题。
表8-2 merge函数的参数
indicator 添加特殊的列_merge,它可以指明每个行的来源,它的值有left_only、right_only或both,根据每行的合并数据的来源。
索引上的合并
有时候,DataFrame中的连接键位于其索引中。在这种情况下,你可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键:
In [56]: left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
....: 'value': range(6)})
In [57]: right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
In [58]: left1
Out[58]:
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5
In [59]: right1
Out[59]:
group_val
a 3.5
b 7.0
In [60]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[60]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
由于默认的merge方法是求取连接键的交集,因此你可以通过外连接的方式得到它们的并集:
In [61]: pd.merge(left1, right1, left_on='key', right_index=True, how='outer')
Out[61]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
5 c 5 NaN
对于层次化索引的数据,事情就有点复杂了,因为索引的合并默认是多键合并:
In [62]: lefth = pd.DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio',
....: 'Nevada', 'Nevada'],
....: 'key2': [2000, 2001, 2002, 2001, 2002],
....: 'data': np.arange(5.)})
In [63]: righth = pd.DataFrame(np.arange(12).reshape((6, 2)),
....: index=[['Nevada', 'Nevada', 'Ohio', 'Ohio',
....: 'Ohio', 'Ohio'],
....: [2001, 2000, 2000, 2000, 2001, 2002]],
....: columns=['event1', 'event2'])
In [64]: lefth
Out[64]:
data key1 key2
0 0.0 Ohio 2000
1 1.0 Ohio 2001
2 2.0 Ohio 2002
3 3.0 Nevada 2001
4 4.0 Nevada 2002
In [65]: righth
Out[65]:
event1 event2
Nevada 2001 0 1
2000 2 3
Ohio 2000 4 5
2000 6 7
2001 8 9
2002 10 11
这种情况下,你必须以列表的形式指明用作合并键的多个列(注意用how='outer'对重复索引值的处理):
In [66]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)
Out[66]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4 5
0 0.0 Ohio 2000 6 7
1 1.0 Ohio 2001 8 9
2 2.0 Ohio 2002 10 11
3 3.0 Nevada 2001 0 1
In [67]: pd.merge(lefth, righth, left_on=['key1', 'key2'],
....: right_index=True, how='outer')
Out[67]:
data key1 key2 event1 event2
0 0.0 Ohio 2000 4.0 5.0
0 0.0 Ohio 2000 6.0 7.0
1 1.0 Ohio 2001 8.0 9.0
2 2.0 Ohio 2002 10.0 11.0
3 3.0 Nevada 2001 0.0 1.0
4 4.0 Nevada 2002 NaN NaN
4 NaN Nevada 2000 2.0 3.0
同时使用合并双方的索引也没问题:
In [68]: left2 = pd.DataFrame([[1., 2.], [3., 4.], [5., 6.]],
....: index=['a', 'c', 'e'],
....: columns=['Ohio', 'Nevada'])
In [69]: right2 = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
....: index=['b', 'c', 'd', 'e'],
....: columns=['Missouri', 'Alabama'])
In [70]: left2
Out[70]:
Ohio Nevada
a 1.0 2.0
c 3.0 4.0
e 5.0 6.0
In [71]: right2
Out[71]:
Missouri Alabama
b 7.0 8.0
c 9.0 10.0
d 11.0 12.0
e 13.0 14.0
In [72]: pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
Out[72]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
DataFrame还有一个便捷的join实例方法,它能更为方便地实现按索引合并。它还可用于合并多个带有相同或相似索引的DataFrame对象,但要求没有重叠的列。在上面那个例子中,我们可以编写:
In [73]: left2.join(right2, how='outer')
Out[73]:
Ohio Nevada Missouri Alabama
a 1.0 2.0 NaN NaN
b NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0
d NaN NaN 11.0 12.0
e 5.0 6.0 13.0 14.0
因为一些历史版本的遗留原因,DataFrame的join方法默认使用的是左连接,保留左边表的行索引。它还支持在调用的DataFrame的列上,连接传递的DataFrame索引:
In [74]: left1.join(right1, on='key')
Out[74]:
key value group_val
0 a 0 3.5
1 b 1 7.0
2 a 2 3.5
3 a 3 3.5
4 b 4 7.0
5 c 5 NaN
最后,对于简单的索引合并,你还可以向join传入一组DataFrame,下一节会介绍更为通用的concat函数,也能实现此功能:
In [75]: another = pd.DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
....: index=['a', 'c', 'e', 'f'],
....: columns=['New York',
'Oregon'])
In [76]: another
Out[76]:
New York Oregon
a 7.0 8.0
c 9.0 10.0
e 11.0 12.0
f 16.0 17.0
In [77]: left2.join([right2, another])
Out[77]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
c 3.0 4.0 9.0 10.0 9.0 10.0
e 5.0 6.0 13.0 14.0 11.0 12.0
In [78]: left2.join([right2, another], how='outer')
Out[78]:
Ohio Nevada Missouri Alabama New York Oregon
a 1.0 2.0 NaN NaN 7.0 8.0
b NaN NaN 7.0 8.0 NaN NaN
c 3.0 4.0 9.0 10.0 9.0 10.0
d NaN NaN 11.0 12.0 NaN NaN
e 5.0 6.0 13.0 14.0 11.0 12.0
f NaN NaN NaN NaN 16.0 17.0
轴向连接
另一种数据合并运算也被称作连接(concatenation)、绑定(binding)或堆叠(stacking)。NumPy的concatenation函数可以用NumPy数组来做:
In [79]: arr = np.arange(12).reshape((3, 4))
In [80]: arr
Out[80]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [81]: np.concatenate([arr, arr], axis=1)
Out[81]:
array([[ 0, 1, 2, 3, 0, 1, 2, 3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])
对于pandas对象(如Series和DataFrame),带有标签的轴使你能够进一步推广数组的连接运算。具体点说,你还需要考虑以下这些东西:
- 如果对象在其它轴上的索引不同,我们应该合并这些轴的不同元素还是只使用交集?
- 连接的数据集是否需要在结果对象中可识别?
- 连接轴中保存的数据是否需要保留?许多情况下,DataFrame默认的整数标签最好在连接时删掉。
pandas的concat函数提供了一种能够解决这些问题的可靠方式。我将给出一些例子来讲解其使用方式。假设有三个没有重叠索引的Series:
In [82]: s1 = pd.Series([0, 1], index=['a', 'b'])
In [83]: s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
In [84]: s3 = pd.Series([5, 6], index=['f', 'g'])
对这些对象调用concat可以将值和索引粘合在一起:
In [85]: pd.concat([s1, s2, s3])
Out[85]:
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列):
In [86]: pd.concat([s1, s2, s3], axis=1)
Out[86]:
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
这种情况下,另外的轴上没有重叠,从索引的有序并集(外连接)上就可以看出来。传入join='inner'即可得到它们的交集:
In [87]: s4 = pd.concat([s1, s3])
In [88]: s4
Out[88]:
a 0
b 1
f 5
g 6
dtype: int64
In [89]: pd.concat([s1, s4], axis=1)
Out[89]:
0 1
a 0.0 0
b 1.0 1
f NaN 5
g NaN 6
In [90]: pd.concat([s1, s4], axis=1, join='inner')
Out[90]:
0 1
a 0 0
b 1 1
在这个例子中,f和g标签消失了,是因为使用的是join='inner'选项。
你可以通过join_axes指定要在其它轴上使用的索引:
In [91]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[91]:
0 1
a 0.0 0.0
c NaN NaN
b 1.0 1.0
e NaN NaN
不过有个问题,参与连接的片段在结果中区分不开。假设你想要在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的:
In [92]: result = pd.concat([s1, s1, s3], keys=['one','two', 'three'])
In [93]: result
Out[93]:
one a 0
b 1
two a 0
b 1
three f 5
g 6
dtype: int64
In [94]: result.unstack()
Out[94]:
a b f g
one 0.0 1.0 NaN NaN
two 0.0 1.0 NaN NaN
three NaN NaN 5.0 6.0
如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列头:
In [95]: pd.concat([s1, s2, s3], axis=1, keys=['one','two', 'three'])
Out[95]:
one two three
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 2.0 NaN
d NaN 3.0 NaN
e NaN 4.0 NaN
f NaN NaN 5.0
g NaN NaN 6.0
同样的逻辑也适用于DataFrame对象:
In [96]: df1 = pd.DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
....: columns=['one', 'two'])
In [97]: df2 = pd.DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
....: columns=['three', 'four'])
In [98]: df1
Out[98]:
one two
a 0 1
b 2 3
c 4 5
In [99]: df2
Out[99]:
three four
a 5 6
c 7 8
In [100]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
Out[100]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
如果传入的不是列表而是一个字典,则字典的键就会被当做keys选项的值:
In [101]: pd.concat({'level1': df1, 'level2': df2}, axis=1)
Out[101]:
level1 level2
one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
此外还有两个用于管理层次化索引创建方式的参数(参见表8-3)。举个例子,我们可以用names参数命名创建的轴级别:
In [102]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'],
.....: names=['upper', 'lower'])
Out[102]:
upper level1 level2
lower one two three four
a 0 1 5.0 6.0
b 2 3 NaN NaN
c 4 5 7.0 8.0
最后一个关于DataFrame的问题是,DataFrame的行索引不包含任何相关数据:
In [103]: df1 = pd.DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd'])
In [104]: df2 = pd.DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])
In [105]: df1
Out[105]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
In [106]: df2
Out[106]:
b d a
0 0.476985 3.248944 -1.021228
1 -0.577087 0.124121 0.302614
在这种情况下,传入ignore_index=True即可:
In [107]: pd.concat([df1, df2], ignore_index=True)
Out[107]:
a b c d
0 1.246435 1.007189 -1.296221 0.274992
1 0.228913 1.352917 0.886429 -2.001637
2 -0.371843 1.669025 -0.438570 -0.539741
3 -1.021228 0.476985 NaN 3.248944
4 0.302614 -0.577087 NaN 0.124121
表8-3 concat函数的参数
合并重叠数据
还有一种数据组合问题不能用简单的合并(merge)或连接(concatenation)运算来处理。比如说,你可能有索引全部或部分重叠的两个数据集。举个有启发性的例子,我们使用NumPy的where函数,它表示一种等价于面向数组的if-else:
In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),
.....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [110]: b[-1] = np.nan
In [111]: a
Out[111]:
f NaN
e 2.5
d NaN
c 3.5
b 4.5
a NaN
dtype: float64
In [112]: b
Out[112]:
f 0.0
e 1.0
d 2.0
c 3.0
b 4.0
a NaN
dtype: float64
In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. , 2.5, 2. , 3.5, 4.5, nan])
Series有一个combine_first方法,实现的也是一样的功能,还带有pandas的数据对齐:
In [114]: b[:-2].combine_first(a[2:])
Out[114]:
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
dtype: float64
对于DataFrame,combine_first自然也会在列上做同样的事情,因此你可以将其看做:用传递对象中的数据为调用对象的缺失数据“打补丁”:
In [115]: df1 = pd.DataFrame({'a': [1., np.nan, 5., np.nan],
.....: 'b': [np.nan, 2., np.nan, 6.],
.....: 'c': range(2, 18, 4)})
In [116]: df2 = pd.DataFrame({'a': [5., 4., np.nan, 3., 7.],
.....: 'b': [np.nan, 3., 4., 6., 8.]})
In [117]: df1
Out[117]:
a b c
0 1.0 NaN 2
1 NaN 2.0 6
2 5.0 NaN 10
3 NaN 6.0 14
In [118]: df2
Out[118]:
a b
0 5.0 NaN
1 4.0 3.0
2 NaN 4.0
3 3.0 6.0
4 7.0 8.0
In [119]: df1.combine_first(df2)
Out[119]:
a b c
0 1.0 NaN 2.0
1 4.0 2.0 6.0
2 5.0 4.0 10.0
3 3.0 6.0 14.0
4 7.0 8.0 NaN
8.3 重塑和轴向旋转
有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)运算。
重塑层次化索引
层次化索引为DataFrame数据的重排任务提供了一种具有良好一致性的方式。主要功能有二:
- stack:将数据的列“旋转”为行。
- unstack:将数据的行“旋转”为列。
我将通过一系列的范例来讲解这些操作。接下来看一个简单的DataFrame,其中的行列索引均为字符串数组:
In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
.....: index=pd.Index(['Ohio','Colorado'], ame='state'),
.....: columns=pd.Index(['one', 'two', 'three'],
.....: name='number'))
In [121]: data
Out[121]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
对该数据使用stack方法即可将列转换为行,得到一个Series:
In [122]: result = data.stack()
In [123]: result
Out[123]:
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int64
对于一个层次化索引的Series,你可以用unstack将其重排为一个DataFrame:
In [124]: result.unstack()
Out[124]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
默认情况下,unstack操作的是最内层(stack也是如此)。传入分层级别的编号或名称即可对其它级别进行unstack操作:
In [125]: result.unstack(0)
Out[125]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5
In [126]: result.unstack('state')
Out[126]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5
如果不是所有的级别值都能在各分组中找到的话,则unstack操作可能会引入缺失数据:
In [127]: s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
In [128]: s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
In [129]: data2 = pd.concat([s1, s2], keys=['one', 'two'])
In [130]: data2
Out[130]:
one a 0
b 1
c 2
d 3
two c 4
d 5
e 6
dtype: int64
In [131]: data2.unstack()
Out[131]:
a b c d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0
stack默认会滤除缺失数据,因此该运算是可逆的:
In [132]: data2.unstack()
Out[132]:
a b c d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0
In [133]: data2.unstack().stack()
Out[133]:
one a 0.0
b 1.0
c 2.0
d 3.0
two c 4.0
d 5.0
e 6.0
dtype: float64
In [134]: data2.unstack().stack(dropna=False)
Out[134]:
one a 0.0
b 1.0
c 2.0
d 3.0
e NaN
two a NaN
b NaN
c 4.0
d 5.0
e 6.0
dtype: float64
在对DataFrame进行unstack操作时,作为旋转轴的级别将会成为结果中的最低级别:
In [135]: df = pd.DataFrame({'left': result, 'right': result + 5},
.....: columns=pd.Index(['left', 'right'], name='side'))
In [136]: df
Out[136]:
side left right
state number
Ohio one 0 5
two 1 6
three 2 7
Colorado one 3 8
two 4 9
three 5 10
In [137]: df.unstack('state')
Out[137]:
side left right
state Ohio Colorado Ohio Colorado
number
one 0 3 5 8
two 1 4 6 9
three 2 5 7 10
当调用stack,我们可以指明轴的名字:
In [138]: df.unstack('state').stack('side')
Out[138]:
state Colorado Ohio
number side
one left 3 0
right 8 5
two left 4 1
right 9 6
three left 5 2
right 10 7
将“长格式”旋转为“宽格式”
多个时间序列数据通常是以所谓的“长格式”(long)或“堆叠格式”(stacked)存储在数据库和CSV中的。我们先加载一些示例数据,做一些时间序列规整和数据清洗:
In [139]: data = pd.read_csv('examples/macrodata.csv')
In [140]: data.head()
Out[140]:
year quarter realgdp realcons realinv realgovt realdpi cpi \
0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98
1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15
2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35
3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37
4 1960.0 1.0 2847.699 1770.5 331.722 462.199 1955.5 29.54
m1 tbilrate unemp pop infl realint
0 139.7 2.82 5.8 177.146 0.00 0.00
1 141.7 3.08 5.1 177.830 2.34 0.74
2 140.5 3.82 5.3 178.657 2.74 1.09
3 140.0 4.33 5.6 179.386 0.27 4.06
4 139.6 3.50 5.2 180.007 2.31 1.19
In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
.....: name='date')
In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
In [143]: data = data.reindex(columns=columns)
In [144]: data.index = periods.to_timestamp('D', 'end')
In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})
这就是多个时间序列(或者其它带有两个或多个键的可观察数据,这里,我们的键是date和item)的长格式。表中的每行代表一次观察。
关系型数据库(如MySQL)中的数据经常都是这样存储的,因为固定架构(即列名和数据类型)有一个好处:随着表中数据的添加,item列中的值的种类能够增加。在前面的例子中,date和item通常就是主键(用关系型数据库的说法),不仅提供了关系完整性,而且提供了更为简单的查询支持。有的情况下,使用这样的数据会很麻烦,你可能会更喜欢DataFrame,不同的item值分别形成一列,date列中的时间戳则用作索引。DataFrame的pivot方法完全可以实现这个转换:
In [147]: pivoted = ldata.pivot('date', 'item', 'value')
In [148]: pivoted
Out[148]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
1960-06-30 0.14 2834.390 5.2
1960-09-30 2.70 2839.022 5.6
1960-12-31 1.21 2802.616 6.3
1961-03-31 -0.40 2819.264 6.8
1961-06-30 1.47 2872.005 7.0
... ... ... ...
2007-06-30 2.75 13203.977 4.5
2007-09-30 3.45 13321.109 4.7
2007-12-31 6.38 13391.249 4.8
2008-03-31 2.82 13366.865 4.9
2008-06-30 8.53 13415.266 5.4
2008-09-30 -3.16 13324.600 6.0
2008-12-31 -8.79 13141.920 6.9
2009-03-31 0.94 12925.410 8.1
2009-06-30 3.37 12901.504 9.2
2009-09-30 3.56 12990.341 9.6
[203 rows x 3 columns]
前两个传递的值分别用作行和列索引,最后一个可选值则是用于填充DataFrame的数据列。假设有两个需要同时重塑的数据列:
In [149]: ldata['value2'] = np.random.randn(len(ldata))
In [150]: ldata[:10]
Out[150]:
date item value value2
0 1959-03-31 realgdp 2710.349 0.523772
1 1959-03-31 infl 0.000 0.000940
2 1959-03-31 unemp 5.800 1.343810
3 1959-06-30 realgdp 2778.801 -0.713544
4 1959-06-30 infl 2.340 -0.831154
5 1959-06-30 unemp 5.100 -2.370232
6 1959-09-30 realgdp 2775.488 -1.860761
7 1959-09-30 infl 2.740 -0.860757
8 1959-09-30 unemp 5.300 0.560145
9 1959-12-31 realgdp 2785.204 -1.265934
如果忽略最后一个参数,得到的DataFrame就会带有层次化的列:
In [151]: pivoted = ldata.pivot('date', 'item')
In [152]: pivoted[:5]
Out[152]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810
1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232
1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145
1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512
1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543
In [153]: pivoted['value'][:5]
Out[153]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
注意,pivot其实就是用set_index创建层次化索引,再用unstack重塑:
In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item')
In [155]: unstacked[:7]
Out[155]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810
1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232
1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145
1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512
1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543
1960-06-30 0.14 2834.390 5.2 -0.970736 -1.541996 -1.307030
1960-09-30 2.70 2839.022 5.6 0.377984 0.286350 -0.753887
将“宽格式”旋转为“长格式”
旋转DataFrame的逆运算是pandas.melt。它不是将一列转换到多个新的DataFrame,而是合并多个列成为一个,产生一个比输入长的DataFrame。看一个例子:
In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
.....: 'A': [1, 2, 3],
.....: 'B': [4, 5, 6],
.....: 'C': [7, 8, 9]})
In [158]: df
Out[158]:
A B C key
0 1 4 7 foo
1 2 5 8 bar
2 3 6 9 baz
key列可能是分组指标,其它的列是数据值。当使用pandas.melt,我们必须指明哪些列是分组指标。下面使用key作为唯一的分组指标:
In [159]: melted = pd.melt(df, ['key'])
In [160]: melted
Out[160]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
6 foo C 7
7 bar C 8
8 baz C 9
使用pivot,可以重塑回原来的样子:
In [161]: reshaped = melted.pivot('key', 'variable', 'value')
In [162]: reshaped
Out[162]:
variable A B C
key
bar 2 5 8
baz 3 6 9
foo 1 4 7
因为pivot的结果从列创建了一个索引,用作行标签,我们可以使用reset_index将数据移回列:
In [163]: reshaped.reset_index()
Out[163]:
variable key A B C
0 bar 2 5 8
1 baz 3 6 9
2 foo 1 4 7
你还可以指定列的子集,作为值的列:
In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
Out[164]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
pandas.melt也可以不用分组指标:
In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])
Out[165]:
variable value
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
6 C 7
7 C 8
8 C 9
In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])
Out[166]:
variable value
0 key foo
1 key bar
2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6
8.4 总结
现在你已经掌握了pandas数据导入、清洗、重塑,我们可以进一步学习matplotlib数据可视化。我们在稍后会回到pandas,学习更高级的分析。
第1章 准备工作
第2章 Python语法基础,IPython和Jupyter
第3章 Python的数据结构、函数和文件
第4章 NumPy基础:数组和矢量计算
第5章 pandas入门
第6章 数据加载、存储与文件格式
第7章 数据清洗和准备
第8章 数据规整:聚合、合并和重塑
第9章 绘图和可视化
第10章 数据聚合与分组运算
第11章 时间序列
第12章 pandas高级应用
第13章 Python建模库介绍
第14章 数据分析案例
附录A NumPy高级应用
附录B 更多关于IPython的内容(完)