性能优化IOS网友们的篇章iOS开发 技术集锦

iOS的MD5/SHA1加密算法的实现

2015-12-26  本文已影响6674人  名字太多不会起

HASH算法是密码学的基础,比较常用的有MD5和SHA,最重要的两条性质,就是不可逆和无冲突
所谓不可逆,就是当你知道x的HASH值,无法求出x;
所谓无冲突,就是当你知道x,无法求出一个y, 使x与y的HASH值相同。
这两条性质在数学上都是不成立的。因为一个函数必然可逆,且由于HASH函数的值域有限,理论上会有无穷多个不同的原始值,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资源都做不到。

废话说到这,这里我们看在iOS中MD5/SHA1是怎样实现的

GTMVase64&下载地址: https://code.google.com/p/google-toolbox-for-mac/source/browse/trunk/Foundation/?r=87

说明:Base64不是用来加密的。你看看经过BASE64编码后的字符串,全部都是由标准键盘上面的常规字符组成,这样编码后的字符串在网关之间传递不会产生UNICODE字符串不能识别或者丢失的现象。你再仔细研究下EMAIL就会发现其实EMAIL就是用base64编码过后再发送的。然后接收的时候再还原。 有一种情况下用Base64编码也很好,比如一个图片文件,或者其他任何二进制文件。我可以把它编码成字符串。这样用XML或者数据库就能直接以文本的方式来存储这些文件了

要引入#import <CommonCrypto/CommonDigest.h>

SHA1编码

- (NSString*) sha1
{
    const char *cstr = [self cStringUsingEncoding:NSUTF8StringEncoding];

    NSData *data = [NSData dataWithBytes:cstr length:self.length];
    //使用对应的CC_SHA1,CC_SHA256,CC_SHA384,CC_SHA512的长度分别是20,32,48,64
    uint8_t digest[CC_SHA1_DIGEST_LENGTH];
    //使用对应的CC_SHA256,CC_SHA384,CC_SHA512
    CC_SHA1(data.bytes, data.length, digest);
    
    NSMutableString* output = [NSMutableString stringWithCapacity:CC_SHA1_DIGEST_LENGTH * 2];
    
    for(int i = 0; i < CC_SHA1_DIGEST_LENGTH; i++)
        [output appendFormat:@"%02x", digest[i]];
    
    return output;
}


MD5编码

-(NSString *) md5
{
    const char *cStr = [self UTF8String];
    unsigned char digest[CC_MD5_DIGEST_LENGTH];
    CC_MD5( cStr, strlen(cStr), digest );
    
    NSMutableString *output = [NSMutableString stringWithCapacity:CC_MD5_DIGEST_LENGTH * 2];
    
    for(int i = 0; i < CC_MD5_DIGEST_LENGTH; i++)
        [output appendFormat:@"%02x", digest[i]];
    
    return output;
}

当然也可以结合BASE64来使用,这里的BASE64编码使用 GTMBase64实现
我们要引入了一个GTMBase64编码解码字符串,下载地址在前面!

- (NSString *) sha1_base64
{
    const char *cstr = [self cStringUsingEncoding:NSUTF8StringEncoding];
    NSData *data = [NSData dataWithBytes:cstr length:self.length];
    
    uint8_t digest[CC_SHA1_DIGEST_LENGTH];
    
    CC_SHA1(data.bytes, data.length, digest);
    
    NSData * base64 = [[NSData alloc]initWithBytes:digest length:CC_SHA1_DIGEST_LENGTH];
    base64 = [GTMBase64 encodeData:base64];
    
    NSString * output = [[NSString alloc] initWithData:base64 encoding:NSUTF8StringEncoding];
    return output;
}

- (NSString *) md5_base64
{
    const char *cStr = [self UTF8String];
    unsigned char digest[CC_MD5_DIGEST_LENGTH];
    CC_MD5( cStr, strlen(cStr), digest );
    
    NSData * base64 = [[NSData alloc]initWithBytes:digest length:CC_MD5_DIGEST_LENGTH];
    base64 = [GTMBase64 encodeData:base64];
    
    NSString * output = [[NSString alloc] initWithData:base64 encoding:NSUTF8StringEncoding];
    return output;
}

- (NSString *) base64
{
    NSData * data = [self dataUsingEncoding:NSASCIIStringEncoding allowLossyConversion:YES];
    data = [GTMBase64 encodeData:data];
    NSString * output = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
    return output; 
}

接下来我们来调用看一下

NSString *msg = @"123456789";
    NSLog(@"base64加密:%@",[msg base64]);
    NSLog(@"SHA1:%@",[msg sha1]);
    NSLog(@"SHA1_base64加密:%@",[msg sha1_base64]);
    NSLog(@"MD5_base64加密:%@",[msg md5_bas


#输出结果
2015-12-26 11:19:19.253 HASH散列算法[1132:153612] base64加密:MTIzNDU2Nzg5
2015-12-26 11:19:19.253 HASH散列算法[1132:153612] SHA1:f7c3bc1d808e04732adf679965ccc34ca7ae3441
2015-12-26 11:19:19.253 HASH散列算法[1132:153612] SHA1_base64加密:98O8HYCOBHMq32eZZczDTKeuNEE=
2015-12-26 11:19:19.253 HASH散列算法[1132:153612] MD5_base64加密:JfnnlDI7RTiF9RgfG2JNCw==
2015-12-26 11:19:19.253 HASH散列算法[1132:153612] MD5加密:25f9e794323b453885f5181f1b624d0b




上一篇下一篇

猜你喜欢

热点阅读