技术深度学习基石程序员

如何构建一个简单的神经网络

2017-02-06  本文已影响3301人  小聪明李良才

如何构建一个简单的神经网络

最近报名了Udacity的深度学习基石,这是介绍了第二部分神经网络入门,第一篇是线性回归背后的数学.
本文notebook的地址是:https://github.com/zhuanxuhit/nd101/blob/master/1.Intro_to_Deep_Learning/2.How_to_Make_a_Neural_Network/python-network.ipynb

1. 模型阐述

假设我们有下面的一组数据

输入1 输入2 输入3 输出
0 0 1 0
1 1 1 1
1 0 1 1
0 1 1 0

对于上面的表格,我们可以找出其中的一个规律是:

输入的第一列和输出相同

那对于输入有3列,每列有0和1两个值,那可能的排列有\(2^3=8\)种,但是此处只有4种,那么在有限的数据情况下,我们应该怎么预测其他结果呢?
这个时候神经网络就大显身手了!

看代码:

%matplotlib inline
%config InlineBackend.figure_format = 'retina'

from numpy import exp, array, random, dot

class NeuralNetwork():
    def __init__(self):
        # Seed the random number generator, so it generates the same numbers
        # every time the program runs.
        random.seed(1)

        # We model a single neuron, with 3 input connections and 1 output connection.
        # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
        # and mean 0.
        self.synaptic_weights = 2 * random.random((3, 1)) - 1
        self.sigmoid_derivative = self.__sigmoid_derivative

    # The Sigmoid function, which describes an S shaped curve.
    # We pass the weighted sum of the inputs through this function to
    # normalise them between 0 and 1.
    def __sigmoid(self, x):
        return 1 / (1 + exp(-x))
    
   

    # The derivative of the Sigmoid function.
    # This is the gradient of the Sigmoid curve.
    # It indicates how confident we are about the existing weight.
    def __sigmoid_derivative(self, x):
        return x * (1 - x)

    # We train the neural network through a process of trial and error.
    # Adjusting the synaptic weights each time.
    def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
        for iteration in range(number_of_training_iterations):
            # Pass the training set through our neural network (a single neuron).
            output = self.think(training_set_inputs)

            # Calculate the error (The difference between the desired output
            # and the predicted output).
            error = training_set_outputs - output

            # Multiply the error by the input and again by the gradient of the Sigmoid curve.
            # This means less confident weights are adjusted more.
            # This means inputs, which are zero, do not cause changes to the weights.
            adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))

            # Adjust the weights.
            self.synaptic_weights += adjustment

    # The neural network thinks.
    def think(self, inputs):
        # Pass inputs through our neural network (our single neuron).
        return self.__sigmoid(dot(inputs, self.synaptic_weights))    
#Intialise a single neuron neural network.
neural_network = NeuralNetwork()

print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)

# The training set. We have 4 examples, each consisting of 3 input values
# and 1 output value.
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T

# Train the neural network using a training set.
# Do it 10,000 times and make small adjustments each time.
neural_network.train(training_set_inputs, training_set_outputs, 10000)

print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)

# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))
Random starting synaptic weights: 
[[-0.16595599]
 [ 0.44064899]
 [-0.99977125]]
New synaptic weights after training: 
[[ 9.67299303]
 [-0.2078435 ]
 [-4.62963669]]
Considering new situation [1, 0, 0] -> ?: 
[ 0.99993704]

以上代码来自:https://github.com/llSourcell/Make_a_neural_network
现在我们来分析下具体的过程:
第一个我们需要注意的是sigmoid function,其图如下:

import matplotlib.pyplot as plt
import numpy as np

def sigmoid(x):
    a = []
    for item in x:
        a.append(1/(1+np.exp(-item)))
    return a
    
x = np.arange(-6., 6., 0.2)
sig = sigmoid(x)
plt.plot(x,sig)
plt.grid()
plt.show()
output_5_0.png
我们可以看到sigmoid函数将输入转换到了0-1之间的值,而sigmoid函数的导数是:

def __sigmoid_derivative(self, y):
return y * (1 - y)

其具体的含义看图:
def sigmoid_derivative(x):
    y = 1/(1+np.exp(-x))
    return y * (1-y)

def derivative(point):
    dx = np.arange(-0.5,0.5,0.1)
    slope = sigmoid_derivative(point)
    return [point+dx,slope * dx + 1/(1+np.exp(-point))]

x = np.arange(-6., 6., 0.1)

sig = sigmoid(x)
point1 = 2
slope1 = sigmoid_derivative(point1)
plt.plot(x,sig)
x1,y1 = derivative(point1)
plt.plot(x1,y1,linewidth=5)
x2,y2 = derivative(0)
plt.plot(x2,y2,linewidth=5)
x3,y3 = derivative(-4)
plt.plot(x3,y3,linewidth=5)
plt.grid()
plt.show()
output_7_0.png

现在我们来根据图解释下实际的含义:

  1. 首先输出是0到1之间的值,我们可以将其认为是一个可信度,0不可信,1完全可信
  2. 当输入是0的时候,输出是0.5,什么意思呢?意思是输出模棱两可

基于以上两点,我们来看下上面函数的中的一个计算过程:

adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))

这个调整值的含义我们就知道了,当输出接近0和1时候,我们已经预测的挺准了,此时调整就基本接近于0了
而当输出为0.5左右的时候,说明预测完全是瞎猜,我们就需要快速调整,因此此时的导数也是最大的,即上图的绿色曲线,其斜度也是最大的

基于上面的一个讨论,我们还可以有下面的一个结论:

  1. 当输入是1,输出是0,我们需要不断减小 weight 的值,这样子输出才会是很小,sigmoid输出才会是0
  2. 当输入是1,输出是1,我们需要不断增大 weight 的值,这样子输出才会是很大,sigmoid输出才会是1

这时候我们再来看下最初的数据,

输入1 输入2 输入3 输出
0 0 1 0
1 1 1 1
1 0 1 1
0 1 1 0

我们可以断定输入1的weight值会变大,而输入2,3的weight值会变小。
根据之前训练出来的结果也支持了我们的推断:

Random starting synaptic weights: 
[[-0.16595599]
 [ 0.44064899]
 [-0.99977125]]
New synaptic weights after training: 
[[ 9.67299303]
 [-0.2078435 ]
 [-4.62963669]]

2. 扩展

我们来将上面的问题稍微复杂下,假设我们的输入如下:

输入1 输入2 输入3 输出
0 0 1 0
0【此处改变】 1 1 1
1 0 1 1
1【此处改变】 1 1 0

此处我们只是改变一个值,此时我们再次训练呢?
我们观察上面的数据,好像很难再像最初一样直接观察出 输出1 == 输出 的这种简单的关系了,我们要稍微深入的观察下了

基于上面的观察,我们似乎找不到像输出1 == 输出这种 one-to-one 的关系了,我们有什么办法呢?
这个时候,就需要引入 hidden layer,如下表格:

输入1 输入2 输入3 w1 w2 w3 中间输出
0 0 1 0.1 0.2 0 0
0 1 1 0.2 0.6 0.4 1
1 0 1 0.3 0.2 0.7 1
1 1 1 0.1 0.5 -0.6 0

此时我们得到中的中间输入和最后输出就还是原来的一个 输出1 == 输出 关系了。
上面介绍的这种方法就是深度学习的最简单的形式

深度学习就是通过增加层次,不断去放大输入和输出之间的关系,到最后,我们可以从复杂的初看起来毫不相干的数据中,找到一个能一眼就看出来的关系

此处我们还是用之前的网络来训练

#Intialise a single neuron neural network.
neural_network = NeuralNetwork()

print("Random starting synaptic weights: ")
print(neural_network.synaptic_weights)

# The training set. We have 4 examples, each consisting of 3 input values
# and 1 output value.
training_set_inputs = array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T

# Train the neural network using a training set.
# Do it 10,000 times and make small adjustments each time.
neural_network.train(training_set_inputs, training_set_outputs, 10000)

print("New synaptic weights after training: ")
print(neural_network.synaptic_weights)

train_loss = MSE(neural_network.think(training_set_inputs), training_set_outputs)
print("Training loss: " + str(train_loss)[:5])
# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(neural_network.think(array([1, 0, 0])))

print("Debug...")
output = neural_network.think(training_set_inputs)
print(output)
# print(dot(training_set_inputs, neural_network.synaptic_weights))

error = training_set_outputs - output
# print(error) error 是0.5
print(error * neural_network.sigmoid_derivative(output))
print(training_set_inputs.T)
adjustment = dot(training_set_inputs.T, error * neural_network.sigmoid_derivative(output))
# print(adjustment)
Random starting synaptic weights: 
[[-0.16595599]
 [ 0.44064899]
 [-0.99977125]]
New synaptic weights after training: 
[[  2.08166817e-16]
 [  2.22044605e-16]
 [ -3.05311332e-16]]
Training loss: 0.25
Considering new situation [1, 0, 0] -> ?: 
[ 0.5]
Debug...
[[ 0.5]
 [ 0.5]
 [ 0.5]
 [ 0.5]]
[[-0.125]
 [ 0.125]
 [ 0.125]
 [-0.125]]
[[0 0 1 1]
 [0 1 0 1]
 [1 1 1 1]]

此处我们训练可以发现,此处的误差基本就是0.25,然后预测基本不可信。0.5什么鬼!
由数据可以看到此处的weight都已经非常非常小了,然后斜率是0.5,
由上面打印出来的数据,已经达到平衡,adjustment都是0了,不会再次调整了。
由此可以看出,简单的一层网络已经不能再精准的预测了,只能增加复杂度了。
下面我们来加一层再来看下:

class TwoLayerNeuralNetwork(object):
    def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        np.random.seed(1)
        # Initialize weights
        self.weights_0_1 = np.random.normal(0.0, self.hidden_nodes**-0.5, 
                                       (self.input_nodes, self.hidden_nodes)) # n * 2

        self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, 
                                       (self.hidden_nodes, self.output_nodes)) # 2 * 1
        self.lr = learning_rate
        
        #### Set this to your implemented sigmoid function ####
        # Activation function is the sigmoid function
        self.activation_function = self.__sigmoid
    
    def __sigmoid(self, x):
        return 1 / (1 + np.exp(-x))
    
    def __sigmoid_derivative(self, x):
        return x * (1 - x)
    
    def train(self, inputs_list, targets_list):
        # Convert inputs list to 2d array
        inputs = np.array(inputs_list,ndmin=2) # 1 * n
        layer_0 = inputs
        targets = np.array(targets_list,ndmin=2) # 1 * 1

        
        #### Implement the forward pass here ####
        ### Forward pass ###
        layer_1 = self.activation_function(layer_0.dot(self.weights_0_1)) # 1 * 2
        layer_2 = self.activation_function(layer_1.dot(self.weights_1_2)) # 1 * 1
        #### Implement the backward pass here ####
        ### Backward pass ###
        
        # TODO: Output error
        layer_2_error = targets - layer_2
        layer_2_delta = layer_2_error * self.__sigmoid_derivative(layer_2)# y = x so f'(h) = 1
        
        layer_1_error = layer_2_delta.dot(self.weights_1_2.T)
        layer_1_delta = layer_1_error * self.__sigmoid_derivative(layer_1)
        
        # TODO: Update the weights
        self.weights_1_2 += self.lr * layer_1.T.dot(layer_2_delta) # update hidden-to-output weights with gradient descent step
        self.weights_0_1 += self.lr * layer_0.T.dot(layer_1_delta)  # update input-to-hidden weights with gradient descent step
 
        
    def run(self, inputs_list):
        # Run a forward pass through the network
        inputs = np.array(inputs_list,ndmin=2)
        
        #### Implement the forward pass here ####
        layer_1 = self.activation_function(inputs.dot(self.weights_0_1)) # 1 * 2
        layer_2 = self.activation_function(layer_1.dot(self.weights_1_2)) # 1 * 1
        
        return layer_2
def MSE(y, Y):
    return np.mean((y-Y)**2)    
# import sys

training_set_inputs = array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T

### Set the hyperparameters here ###
epochs = 20000
learning_rate = 0.1
hidden_nodes = 4
output_nodes = 1

N_i = 3
network = TwoLayerNeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)

losses = {'train':[]}
for e in range(epochs):
    # Go through a random batch of 128 records from the training data set
    for record, target in zip(training_set_inputs, 
                              training_set_outputs):
#         print(target)
        network.train(record, target)
    
    train_loss = MSE(network.run(training_set_inputs), training_set_outputs)
    sys.stdout.write("\rProgress: " + str(100 * e/float(epochs))[:4] \
                     + "% ... Training loss: " + str(train_loss)[:7])
    
    losses['train'].append(train_loss)
    
print(" ")    
print("After train,layer_0_1: ")
print(network.weights_0_1)
print("After train,layer_1_2: ")
print(network.weights_1_2)
# Test the neural network with a new situation.
print("Considering new situation [1, 0, 0] -> ?: ")
print(network.run(array([1, 0, 0])))
Progress: 99.9% ... Training loss: 0.00078 
After train,layer_0_1: 
[[ 4.4375838  -3.87815184  1.74047905 -5.12726884]
 [ 4.43114847 -3.87644617  1.71905492 -5.10688387]
 [-6.80858063  0.76685389  1.89614363  1.61202043]]
After train,layer_1_2: 
[[-9.21973137]
 [-3.84985864]
 [ 4.75257888]
 [-6.36994226]]
Considering new situation [1, 0, 0] -> ?: 
[[ 0.00557239]]
layer_1=network.activation_function(training_set_inputs.dot(network.weights_0_1))
print(layer_1)
layer_2 = network.activation_function(layer_1.dot(network.weights_1_2))
print(layer_2)
[[  2.20482250e-01   9.33639853e-01   6.30402293e-01   6.24775766e-02]
 [  1.77659862e-02   9.99702482e-01   8.64290928e-01   9.26611880e-01]
 [  6.94975743e-01   8.90040645e-02   8.51261229e-01   2.06917379e-04]
 [  1.27171786e-01   9.58904341e-01   9.55296949e-01   3.77322214e-02]]
[[ 0.02374213]
 [ 0.97285992]
 [ 0.97468116]
 [ 0.02714965]]

最后总结下:我们发现在扩展中,我们只是简单的改变了两个输入值,此时再次用一层神经网络已经难以预测出正确的数据了,此时我们只能通过将神经网络变深,这个过程其实就是再去深度挖掘数据之间关系的过程,此时我们的2层神经网络相比较1层就好多了。

以上内容参考了:A Neural Network in 11 lines of Python (Part 1)

参考代码:https://github.com/llSourcell/Make_a_neural_network

参考视频:https://www.youtube.com/watch?v=p69khggr1Jo

上一篇下一篇

猜你喜欢

热点阅读