Android高工面试被问OKHTTP内核解析,我慌了!
基本使用
从使用方法出发,首先是怎么使用,其次是我们使用的功能在内部是如何实现的.建议大家下载 OkHttp 源码之后,跟着本文,过一遍源码。
官方博客栗子:http://square.github.io/okhttp/#examples
-
OkHttpClient client = new OkHttpClient();
-
String run(String url) throws IOException {
-
Request request = new Request.Builder()
-
.url(url)
-
.build();
-
Response response = client.newCall(request).execute();
-
return response.body().string();
-
}
Request、Response、Call 基本概念
上面的代码中涉及到几个常用的类:Request、Response和Call。下面分别介绍:
Request
每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头。请求还可能包含一个特定内容类型的数据类的主体部分。
Response
响应是对请求的回复,包含状态码、HTTP头和主体部分。
Call
OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步
第一步:创建 OkHttpClient对象,进行源码分析:
OkHttpClient client = new OkHttpClient();
通过okhttp源码分析,直接创建的 OkHttpClient对象并且默认构造builder对象进行初始化
-
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
-
public OkHttpClient() {
-
this(new Builder());
-
}
-
OkHttpClient(Builder builder) {
-
this.dispatcher = builder.dispatcher;
-
this.proxy = builder.proxy;
-
this.protocols = builder.protocols;
-
this.connectionSpecs = builder.connectionSpecs;
-
this.interceptors = Util.immutableList(builder.interceptors);
-
this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
-
this.eventListenerFactory = builder.eventListenerFactory;
-
this.proxySelector = builder.proxySelector;
-
this.cookieJar = builder.cookieJar;
-
this.cache = builder.cache;
-
this.internalCache = builder.internalCache;
-
this.socketFactory = builder.socketFactory;
-
boolean isTLS = false;
-
......
-
this.hostnameVerifier = builder.hostnameVerifier;
-
this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
-
certificateChainCleaner);
-
this.proxyAuthenticator = builder.proxyAuthenticator;
-
this.authenticator = builder.authenticator;
-
this.connectionPool = builder.connectionPool;
-
this.dns = builder.dns;
-
this.followSslRedirects = builder.followSslRedirects;
-
this.followRedirects = builder.followRedirects;
-
this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
-
this.connectTimeout = builder.connectTimeout;
-
this.readTimeout = builder.readTimeout;
-
this.writeTimeout = builder.writeTimeout;
-
this.pingInterval = builder.pingInterval;
-
}
-
}
第二步:接下来发起 HTTP 请求
-
Request request = new Request.Builder().url("url").build();
-
okHttpClient.newCall(request).enqueue(new Callback() {
-
@Override
-
public void onFailure(Call call, IOException e) {
-
}
-
@Override
-
public void onResponse(Call call, Response response) throws IOException {
-
}
-
});
第二步:代码流程分析:
Request request = new Request.Builder().url("url").build();
初始化构建者模式和请求对象,并且用URL替换Web套接字URL。
-
public final class Request {
-
public Builder() {
-
this.method = "GET";
-
this.headers = new Headers.Builder();
-
}
-
public Builder url(String url) {
-
......
-
// Silently replace web socket URLs with HTTP URLs.
-
if (url.regionMatches(true, 0, "ws:", 0, 3)) {
-
url = "http:" + url.substring(3);
-
} else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
-
url = "https:" + url.substring(4);
-
}
-
HttpUrl parsed = HttpUrl.parse(url);
-
......
-
return url(parsed);
-
}
-
public Request build() {
-
......
-
return new Request(this);
-
}
-
}
第三步:方法解析:
-
okHttpClient.newCall(request).enqueue(new Callback() {
-
@Override
-
public void onFailure(Call call, IOException e) {
-
}
-
@Override
-
public void onResponse(Call call, Response response) throws IOException {
-
}
-
});
源码分析:
-
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
-
@Override
-
public Call newCall(Request request) {
-
return new RealCall(this, request, false /* for web socket */);
-
}
-
}
RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。
异步请求的执行流程
final class RealCall implements Call {
@Override
public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
}
由以上源码得知:
1) 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone 方法进行克隆。
2)利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一
3)AsyncCall是RealCall的一个内部类并且继承NamedRunnable,那么首先看NamedRunnable类是什么样的,如下:
-
public abstract class NamedRunnable implements Runnable {
-
......
-
@Override
-
public final void run() {
-
......
-
try {
-
execute();
-
}
-
......
-
}
-
protected abstract void execute();
-
}
可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:
-
final class AsyncCall extends NamedRunnable {
-
private final Callback responseCallback;
-
AsyncCall(Callback responseCallback) {
-
super("OkHttp %s", redactedUrl());
-
this.responseCallback = responseCallback;
-
}
-
......
-
final class RealCall implements Call {
-
@Override protected void execute() {
-
boolean signalledCallback = false;
-
try {
-
Response response = getResponseWithInterceptorChain();
-
if (retryAndFollowUpInterceptor.isCanceled()) {
-
signalledCallback = true;
-
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
-
} else {
-
signalledCallback = true;
-
responseCallback.onResponse(RealCall.this, response);
-
}
-
} catch (IOException e) {
-
......
-
responseCallback.onFailure(RealCall.this, e);
-
} finally {
-
client.dispatcher().finished(this);
-
}
-
}
AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法。最后,调用Dispatcher的finished方法。
关键代码:
responseCallback.onFailure(RealCall.this, new IOException(“Canceled”));
和
responseCallback.onResponse(RealCall.this, response);
走完这两句代码会进行回调到刚刚我们初始化Okhttp的地方,如下:
-
okHttpClient.newCall(request).enqueue(new Callback() {
-
@Override
-
public void onFailure(Call call, IOException e) {
-
}
-
@Override
-
public void onResponse(Call call, Response response) throws IOException {
-
}
-
});
核心重点类Dispatcher线程池介绍
-
public final class Dispatcher {
-
/** 最大并发请求数为64 */
-
private int maxRequests = 64;
-
/** 每个主机最大请求数为5 */
-
private int maxRequestsPerHost = 5;
-
/** 线程池 */
-
private ExecutorService executorService;
-
/** 准备执行的请求 */
-
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
-
/** 正在执行的异步请求,包含已经取消但未执行完的请求 */
-
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
-
/** 正在执行的同步请求,包含已经取消单未执行完的请求 */
-
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
在OkHttp,使用如下构造了单例线程池
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
构造一个线程池ExecutorService:
executorService = new ThreadPoolExecutor(
//corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
0,
//maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
Integer.MAX_VALUE,
//keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
60,
//单位秒
TimeUnit.SECONDS,
//工作队列,先进先出
new SynchronousQueue<Runnable>(),
//单个线程的工厂
Util.threadFactory("OkHttp Dispatcher", false));
可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做”OkHttp Dispatcher”的线程工厂。
也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。
Dispatcher线程池总结
1)调度线程池Disptcher实现了高并发,低阻塞的实现 2)采用Deque作为缓存,先进先出的顺序执行 3)任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能
这里是分析OkHttp源码,并不详细讲线程池原理,如对线程池不了解请参考如下链接
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} finally {
client.dispatcher().finished(this);
}
当任务执行完成后,无论是否有异常,finally代码段总会被执行,也就是会调用Dispatcher的finished函数
void finished(AsyncCall call) {
finished(runningAsyncCalls, call, true);
}
从上面的代码可以看出,第一个参数传入的是正在运行的异步队列,第三个参数为true,下面再看有是三个参数的finished方法:
-
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
-
int runningCallsCount;
-
Runnable idleCallback;
-
synchronized (this) {
-
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
-
if (promoteCalls) promoteCalls();
-
runningCallsCount = runningCallsCount();
-
idleCallback = this.idleCallback;
-
}
-
if (runningCallsCount == 0 && idleCallback != null) {
-
idleCallback.run();
-
}
-
}
打开源码,发现它将正在运行的任务Call从队列runningAsyncCalls中移除后,获取运行数量判断是否进入了Idle状态,接着执行promoteCalls()函数,下面是promoteCalls()方法:
-
private void promoteCalls() {
-
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
-
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
-
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
-
AsyncCall call = i.next();
-
if (runningCallsForHost(call) < maxRequestsPerHost) {
-
i.remove();
-
runningAsyncCalls.add(call);
-
executorService().execute(call);
-
}
-
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
-
}
-
}
主要就是遍历等待队列,并且需要满足同一主机的请求小于maxRequestsPerHost时,就移到运行队列中并交给线程池运行。就主动的把缓存队列向前走了一步,而没有使用互斥锁等复杂编码
核心重点getResponseWithInterceptorChain方法
-
Response getResponseWithInterceptorChain() throws IOException {
-
// Build a full stack of interceptors.
-
List<Interceptor> interceptors = new ArrayList<>();
-
interceptors.addAll(client.interceptors());
-
interceptors.add(retryAndFollowUpInterceptor);
-
interceptors.add(new BridgeInterceptor(client.cookieJar()));
-
interceptors.add(new CacheInterceptor(client.internalCache()));
-
interceptors.add(new ConnectInterceptor(client));
-
if (!forWebSocket) {
-
interceptors.addAll(client.networkInterceptors());
-
}
-
interceptors.add(new CallServerInterceptor(forWebSocket));
-
Interceptor.Chain chain = new RealInterceptorChain(
-
interceptors, null, null, null, 0, originalRequest);
-
return chain.proceed(originalRequest);
-
}
1)在配置 OkHttpClient 时设置的 interceptors; 2)负责失败重试以及重定向的 RetryAndFollowUpInterceptor; 3)负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 BridgeInterceptor; 4)负责读取缓存直接返回、更新缓存的 CacheInterceptor; 5)负责和服务器建立连接的 ConnectInterceptor; 6)配置 OkHttpClient 时设置的 networkInterceptors; 7)负责向服务器发送请求数据、从服务器读取响应数据的 CallServerInterceptor。
OkHttp的这种拦截器链采用的是责任链模式,这样的好处是将请求的发送和处理分开,并且可以动态添加中间的处理方实现对请求的处理、短路等操作。
从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);
从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么拦截器Interceptor是干嘛的,Chain是干嘛的呢?继续往下看RealInterceptorChain
RealInterceptorChain类
下面是RealInterceptorChain的定义,该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。
-
public final class RealInterceptorChain implements Interceptor.Chain {
-
public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
-
HttpCodec httpCodec, RealConnection connection, int index, Request request) {
-
this.interceptors = interceptors;
-
this.connection = connection;
-
this.streamAllocation = streamAllocation;
-
this.httpCodec = httpCodec;
-
this.index = index;
-
this.request = request;
-
}
-
......
-
@Override
-
public Response proceed(Request request) throws IOException {
-
return proceed(request, streamAllocation, httpCodec, connection);
-
}
-
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
-
RealConnection connection) throws IOException {
-
if (index >= interceptors.size()) throw new AssertionError();
-
calls++;
-
......
-
// Call the next interceptor in the chain.
-
RealInterceptorChain next = new RealInterceptorChain(
-
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
-
Interceptor interceptor = interceptors.get(index);
-
Response response = interceptor.intercept(next);
-
......
-
return response;
-
}
-
protected abstract void execute();
-
}
主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。
Interceptor 代码如下:
-
public interface Interceptor {
-
Response intercept(Chain chain) throws IOException;
-
interface Chain {
-
Request request();
-
Response proceed(Request request) throws IOException;
-
Connection connection();
-
}
-
}
BridgeInterceptor
BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:
-
public final class BridgeInterceptor implements Interceptor {
-
......
-
@Override
-
public Response intercept(Chain chain) throws IOException {
-
Request userRequest = chain.request();
-
Request.Builder requestBuilder = userRequest.newBuilder();
-
RequestBody body = userRequest.body();
-
//如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
-
if (body != null) {
-
MediaType contentType = body.contentType();
-
if (contentType != null) {
-
requestBuilder.header("Content-Type", contentType.toString());
-
}
-
long contentLength = body.contentLength();
-
if (contentLength != -1) {
-
requestBuilder.header("Content-Length", Long.toString(contentLength));
-
requestBuilder.removeHeader("Transfer-Encoding");
-
} else {
-
requestBuilder.header("Transfer-Encoding", "chunked");
-
requestBuilder.removeHeader("Content-Length");
-
}
-
}
-
if (userRequest.header("Host") == null) {
-
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
-
}
-
if (userRequest.header("Connection") == null) {
-
requestBuilder.header("Connection", "Keep-Alive");
-
}
-
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
-
// the transfer stream.
-
boolean transparentGzip = false;
-
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
-
transparentGzip = true;
-
requestBuilder.header("Accept-Encoding", "gzip");
-
}
-
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
-
if (!cookies.isEmpty()) {
-
requestBuilder.header("Cookie", cookieHeader(cookies));
-
}
-
if (userRequest.header("User-Agent") == null) {
-
requestBuilder.header("User-Agent", Version.userAgent());
-
}
-
Response networkResponse = chain.proceed(requestBuilder.build());
-
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
-
Response.Builder responseBuilder = networkResponse.newBuilder()
-
.request(userRequest);
-
if (transparentGzip
-
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
-
&& HttpHeaders.hasBody(networkResponse)) {
-
GzipSource responseBody = new GzipSource(networkResponse.body().source());
-
Headers strippedHeaders = networkResponse.headers().newBuilder()
-
.removeAll("Content-Encoding")
-
.removeAll("Content-Length")
-
.build();
-
responseBuilder.headers(strippedHeaders);
-
responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
-
}
-
return responseBuilder.build();
-
}
-
/** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
-
private String cookieHeader(List<Cookie> cookies) {
-
StringBuilder cookieHeader = new StringBuilder();
-
for (int i = 0, size = cookies.size(); i < size; i++) {
-
if (i > 0) {
-
cookieHeader.append("; ");
-
}
-
Cookie cookie = cookies.get(i);
-
cookieHeader.append(cookie.name()).append('=').append(cookie.value());
-
}
-
return cookieHeader.toString();
-
}
-
}
从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。接下来再看下一个拦截器ConnectInterceptor的处理。
-
public final class ConnectInterceptor implements Interceptor {
-
......
-
@Override
-
public Response intercept(Chain chain) throws IOException {
-
RealInterceptorChain realChain = (RealInterceptorChain) chain;
-
Request request = realChain.request();
-
StreamAllocation streamAllocation = realChain.streamAllocation();
-
// We need the network to satisfy this request. Possibly for validating a conditional GET.
-
boolean doExtensiveHealthChecks = !request.method().equals("GET");
-
HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
-
RealConnection connection = streamAllocation.connection();
-
return realChain.proceed(request, streamAllocation, httpCodec, connection);
-
}
-
}
实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。
CallServerInterceptor
CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。它的intercept方法实现如下:
-
@Override
-
public Response intercept(Chain chain) throws IOException {
-
RealInterceptorChain realChain = (RealInterceptorChain) chain;
-
HttpCodec httpCodec = realChain.httpStream();
-
StreamAllocation streamAllocation = realChain.streamAllocation();
-
RealConnection connection = (RealConnection) realChain.connection();
-
Request request = realChain.request();
-
long sentRequestMillis = System.currentTimeMillis();
-
httpCodec.writeRequestHeaders(request);
-
Response.Builder responseBuilder = null;
-
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
-
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
-
// Continue" response before transmitting the request body. If we don't get that, return what
-
// we did get (such as a 4xx response) without ever transmitting the request body.
-
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
-
httpCodec.flushRequest();
-
responseBuilder = httpCodec.readResponseHeaders(true);
-
}
-
if (responseBuilder == null) {
-
// Write the request body if the "Expect: 100-continue" expectation was met.
-
Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
-
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
-
request.body().writeTo(bufferedRequestBody);
-
bufferedRequestBody.close();
-
} else if (!connection.isMultiplexed()) {
-
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
-
// being reused. Otherwise we're still obligated to transmit the request body to leave the
-
// connection in a consistent state.
-
streamAllocation.noNewStreams();
-
}
-
}
-
httpCodec.finishRequest();
-
if (responseBuilder == null) {
-
responseBuilder = httpCodec.readResponseHeaders(false);
-
}
-
Response response = responseBuilder
-
.request(request)
-
.handshake(streamAllocation.connection().handshake())
-
.sentRequestAtMillis(sentRequestMillis)
-
.receivedResponseAtMillis(System.currentTimeMillis())
-
.build();
-
int code = response.code();
-
if (forWebSocket && code == 101) {
-
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
-
response = response.newBuilder()
-
.body(Util.EMPTY_RESPONSE)
-
.build();
-
} else {
-
response = response.newBuilder()
-
.body(httpCodec.openResponseBody(response))
-
.build();
-
}
-
if ("close".equalsIgnoreCase(response.request().header("Connection"))
-
|| "close".equalsIgnoreCase(response.header("Connection"))) {
-
streamAllocation.noNewStreams();
-
}
-
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
-
throw new ProtocolException(
-
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
-
}
-
return response;
-
}
从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。
最后总结
OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(这也好理解,HTTP就是基于TCP协议的),但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念。而OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。
本文在开源项目:https://github.com/Android-Alvin/Android-LearningNotes 中已收录,里面包含不同方向的自学编程路线、面试题集合/面经、及系列技术文章等,资源持续更新中...