遗传图谱及基因克隆、基因编辑
遗传图谱:
原理:基因连锁,重组值,来构建图谱
现在多用软件 :MapMaker及JoinMap 3.0
染色体拼接,利用到遗传图谱。
BSA(QTL定位):分离群体,极端值,取DNA,测序,找差异性标记
基因克隆技术
关键词: 基因克隆 技术2016-08-04 15:58 来源:互联网 点击次数:3016
一、目的基因的获得
目的基因是指所要研究或应用的基因,也就是将要克隆或表达的基因。获得目的基因是分子克隆过程中最重要的一步。目前用于获得目的基因的方法有几种,如限制性内切酶直接分离法、文库筛选法、体外扩增法和人工合成法等,其中限制性内切酶法直接分离目的基因和多聚酶链式反应(PCR)或逆转录-多聚酶链式反应(RT-PCR)体外扩增目的DNA片段是目前最常用的方法。
(一)采用限制性酶切法直接分离目的基因
1. 从原核基因组中制备 原核基因组相对较小,用几种限制性内切酶分别消化原核基因组,或用某种限制性内切酶对所要研究的基因组进行部分消化,可以得到大小不等的各种片段,其中有些片段就会含有目的基因,将这些片段插入载体中进行克隆,经过筛选,可以得到所需的目的基因。
2. 从真核基因组中制备 真核基因组比较大,直接用限制性内切酶消化后需要筛选的克隆数太多,不易操作。可以用一种限制性内切酶先消化基因组DNA,产生连续的DNA片段,然后电泳分离这些DNA片段,再用一段特异探针与这些DNA片段进行杂交,在含有特异性模板的区域就会出现杂交带,可以初步鉴定基因组中是否含有目的基因。我们也可以将酶切后的基因组DNA片段全部克隆入适当的载体中,制成基因组文库,再用特异性探针与基因组文库中的不同克隆进行杂交,阳性克隆即表示克隆到的DNA片段含有特异基因序列。将阳性克隆测序,用第一个克隆片段的末端分离下一个克隆片段,然后利用DNA片段间的重叠顺序来鉴定其他克隆。这样一步步走下去,最终可得全部基因序列,这种技术叫做染色体步移(chromosome walking)。
(二)采用PCR或RT-PCR方法制备目的基因
根据已发表的基因序列设计并合成引物,采用PCR(以基因组DNA为模板)或RT-PCR(以mRNA为模板)从组织或细胞中获取目的基因片段用于基因操作,这是实验室中最常用的获取已知基因的方法。
利用PCR获取目的基因的一大优点就是可以根据需要在引物序列上设计适当的酶切位点、起始密码子或终止密码子等,或通过人为错配改变碱基序列(人工突变)对目的基因进行有限修饰。对于未知基因,可采取构建RT-PCR文库的方法获得未知基因:利用mRNA末端poly A序列尾设计共用引物,将所有mRNA逆转录成cDNA,利用各种工具酶在cDNA末端加尾,然后采用一对共用引物扩增所有cDNA片段,将经PCR扩增后的片段插入到适当载体中,构建成PCR-cDNA文库。这种方法的优点是可以将表达水平很低的mRNA扩增出来,有利于筛选出表达丰度低的基因。由于经过PCR扩增,基因序列的精确性需要采用其他方法进一步确定。
还有一个获得目的基因的方法是利用计算机技术进行“计算机克隆”,即利用GenBank中的基因信息,通过软件比较不同种属基因之间的相似性(同源性),利用保守区序列设计引物,再用PCR或RT-PCR从不同种属或不同组织细胞中获取未知的基因片段。这是目前可实现的一种获得新基因的捷径。
(三)基因组文库或cDNA文库的构建和筛选
将基因组DNA用限制性内切酶消化后插入到适当载体中,得到含有不同插入片段的克隆载体,这种克隆载体的混合物含有长短不同的基因组片段,这就是基因文库。若将细胞内所有mRNA均逆转录成cDNA,然后将所有cDNA片段克隆到适当的载体中,构建成含有不同cDNA片段的克隆载体混合物,这就是cDNA文库。目前许多组织或细胞的基因组或cDNA文库都可以从商业公司买到。
当获得了基因组文库或cDNA文库,可以根据已知的信息合成特异性探针,采用核酸分子杂交的方法从文库中筛选感兴趣的基因片段,这仍是目前获得新基因的一种常用手段。基因组文库或cDNA文库的构建和使用请参见本书相应的章节。
(四)化学合成法制备基因片段
采用DNA合成仪,对目的基因进行分段合成,然后进行连接,可以得到所需的目的基因。化学合成法可以改变原始的基因序列,甚至可以合成自然界不存在的序列。在合成过程中可以根据需要改变核苷酸的密码子,如将真核基因序列中不易在E. coli中利用的稀有密码子改成E. coli偏爱的密码子,有利于真核基因在E. coli中的表达。
二、目的基因和载体的连接
获得目的基因后必须将其放在一定的载体内才能在宿主细胞内扩增或表达。目的基因与载体的连接及其后续的转化过程习惯上称为克隆(cloning)。由于目前很多基因都是利用PCR技术获得,因此这里先介绍PCR产物的克隆策略,然后再介绍其他的克隆方式。
(一)PCR产物的克隆策略
获得PCR产物通常只是克隆的第一步。无论研究的起始材料是RNA还是DNA,最重要的是要有一种有效的方法对PCR产物进行克隆。目前已建立了多种对PCR产物进行克隆的方法,具体选择哪种方法取决于以下几个因素:PCR产物序列是否已知;载体上有哪些单一的限制性酶切位点可以利用;克隆PCR产物的用途等。
1. 限制性内切酶酶切位点添加法 对PCR产物进行克隆的一个基本方法是利用目的片段所特有的限制性内切酶识别位点对产物进行酶切消化。一般是在设计PCR引物时就要考虑到连接方式,直接在引物末端包含与载体相匹配的限制性内切酶位点。设计PCR引物时必须考虑以下几个因素:①如果PCR产物序列未知,那么在引物上所提供的位点有可能会出现在产物DNA中,使用这些位点进行酶切时将会导致产物内部切割,产生缺失的克隆。②如果酶的识别位点靠近DNA末端,内切酶对DNA产物的切割效率会降低。可用Klenow酶、T4多聚核苷酸激酶及T4 DNA连接酶等处理PCR产物来克服这一缺陷:首先用激酶对PCR产物进行处理,然后将PCR产物分子上的突出末端用Klenow酶补平,再用T4 DNA连接酶进行连接,形成由多个PCR产物组成的串联体,这种多聚体能被所采用的内切酶有效地切割。
2. T/A克隆法 在PCR产物的克隆中,还可以利用含有单个胸腺嘧啶(T)3'突出端的线性化载体与带有单个腺苷酸(A)3'突出端的DNA片段的连接来进行克隆,这种克隆系统被称为T/A克隆。它利用了Taq DNA聚合酶具有延伸酶活性,即以不依赖模板的方式将一个核苷酸添加到已完成延伸的PCR产物的3'末端。对于多数DNA聚合酶,这个添加上去的核苷酸通常是A残基。
有几种酶可用来产生3'端带有单个T突出末端的线性化载体,分别是MboII、XcmI和HphI。另外还有两种方法可产生带3'-T突出端的载体,一种是将一个T残基加到经过限制性内切酶线性化处理后产生平端的载体上,或者利用末端转移酶加上一个双脱氧胸腺嘧啶三磷酸(ddTTP);另一种方法则是利用Taq DNA聚合酶具有的延伸酶活性,将一个A残基加到DNA模板的3'端。为了在3'端加上一个T残基,可在高浓度dTTP条件下,将平端载体与Taq DNA聚合酶共同孵育,在其他核苷酸不存在时,载体3'只能加上一个T残基。目前,已有不少商业公司提供专门用于PCR产物克隆的T/A克隆载体。
(二)外源DNA片段和载体的连接
1. 黏性末端的连接 用一种适当的限制性核酸内切酶将目的基因和载体DNA消化,使它们两端各具有相同的黏性末端,两者的互补末端碱基配对,在DNA连接酶作用下,共价连接成新的DNA分子。
(1)单一酶切的黏性末端间的连接:载体分子与外源DNA用同一种限制酶消化后连接有两个缺点:①载体DNA两端的黏性末端可以自身退火,产生载体——载体相连接的假阳性克隆。为了减少和防止这种情况的发生,需用高浓度的外源DNA(插入片段与载体的比率一般为3:1),并用碱性磷酸酶将载体上的5'磷酸基团去掉。②不能定向插入。由于使用同一种内切酶,载体与插入片段的4个末端全为黏性互补顺序,所以外源基因插入可有两个方向。
(2)双酶切的黏性末端间的连接:用两种限制性内切酶消化载体和外源DNA片段,因黏性末端不同,载体分子和外源DNA片段只能按一种方向连接,这就是所谓“定向克隆”。
2. 平头末端的连接 载体和外源DNA片段的末端是平头也可以连接,但由于平端连接时反应更偏向于载体的自身环化,因此这种方法的效率要比粘端连接低。有几种方法可提高平端连接的连接效率:①在连接反应中使目的基因片段分子数大大过量;②用碱性磷酸酶对载体进行处理,去除载体两端的5'磷酸基团。
三、重组分子的扩增和鉴定
(一)重组DNA分子导入受体细胞
目的基因和载体在体外连接形成重组DNA分子后,需要被导入受体细胞中才能进行增殖和(或)表达。接受重组DNA分子的细胞称作受体细胞或宿主细胞。受体细胞分为原核细胞(如大肠杆菌)和真核细胞(如酵母、昆虫细胞及哺乳动物细胞)。原核细胞可作为基因复制扩增的场所,也可作为基因表达的场所;而真核细胞一般只用作基因表达系统。
受体细胞是重组基因增殖的场所,所以对受体细胞也应具有几点要求:①容易接纳重组DNA分子;②对载体的复制扩增无严格限制;③不存在特异的能降解外源DNA的内切酶体;④不对外源DNA进行修饰。由于载体的不同,所具备的筛选标志不同,所用的受体细胞也不同,因此可根据所用的载体选择合适的受体细胞。
一般将重组DNA分子导入原核细胞的过程称为转化(transformation),而导入真核细胞的过程称为转染(transfection)。
未经处理的大肠杆菌很难接受外源重组DNA分子,但经物理或化学方法处理后,细菌对摄取外来DNA分子变得敏感了,这种经处理而易接受外源DNA分子的细胞叫做感受态细胞(competent cell)。
将重组DNA分子和感受态大肠杆菌细胞相混合,使重组DNA分子进入大肠杆菌中,就可以实现重组DNA分子的转化。
(二)重组DNA分子的鉴定
重组DNA分子导入受体细胞后是否得到扩增,扩增后的重组DNA分子是否正确,导入的重组DNA分子是否含有正确的插入片段,重组DNA分子能否表达插入的目的基因,一般可以采用以下几种方法对重组DNA分子进行鉴定。
1. 抗生素筛选 可根据所选用载体的特性,尤其是抗药基因的存在与否进行初步筛选。例如载体具有抗氨苄青霉素的抗性基因,若转化后的细胞能在含氨苄青霉素的培养基中生长,说明载体DNA被导入到了受体细胞中并且能够扩增繁殖。但这种筛选并不能说明目的基因一定连接到了载体上。但通过抗药基因的失活筛选可以证明有外源基因插入。
2. X-gal筛选 有些载体为了方便筛选,根据细菌乳糖操纵子原理,将LacZ基因构建到了载体的多克隆酶切位点处。如果目的基因连接成功,LacZ基因将由于目的基因的插入而失活,不能产生分解乳糖及其类似物的半乳糖苷酶,菌落在含有X-gal的培养基上呈现白色,无目的基因插入的克隆菌落为蓝色。根据这种特性,可以基本判断重组成功与否。
3. 酶切电泳鉴定 将重组DNA分子提取出来,用特定内切酶切割重组DNA分子并电泳。如果目的基因被成功地插入到了载体分子中,可以通过目的基因两端的酶切位点将目的基因切割下来,经琼脂糖凝胶电泳即可以判断目的基因的存在与否,这是简便而常用的鉴定方法。
4. 序列分析 经过初步鉴定后的重组DNA分子往往需要进行目的基因片段的DNA序列分析,通常采用多克隆酶切位点两端的载体序列作为测序时引物的结合位点,即所谓的通用引物。有关DNA序列分析技术将在有关章节详细叙述。一般需要表达的目的基因都必须经过DNA序列分析予以确认。
5. 其他方法 如采用核酸分子杂交或菌落原位杂交鉴定重组DNA分子,或采用蛋白印迹方法直接检测目的蛋白的表达情况。
基因编辑技术CRISPR的发展简史:从发现到爆炸
2018年01月22日 11:06 分类:科技 阅读:3486 评论:0
编者按
北京时间12月19日,《自然》公布了年度10大人物,Broad研究所David Liu开发出了一款全新的“碱基编辑器”而当选,2013年张锋同样因为CRISPR基因编辑技术的开发而入选。由此可见CRISPR基因编辑技术备受外界关注。事实上,对于一项重大的科学发现来说,其历程往往漫长且荆棘丛生,但一旦时机成熟,它将会快速发展并得到广泛应用,CRISPR基因编辑技术也不例外。30多年前,科学家在细菌中发现规律间隔成簇短回文重复序列,之后发现这种重复序列可让细菌对病毒有免疫抗性。但这一现象之所以能迅速引燃每个分子生物学家的实验室,主要是因为该序列衍生的RNA可引导蛋白质结合特定DNA片段,从而引起目标DNA上的双链断裂,该技术简单并且极为高效。
《知识分子》将陆续介绍基因编辑技术的前沿进展。本系列文章由上海科技大学生命科学与技术学院刘冀珑教授主持策划。
撰文 | 刘 奕 王俏琦 张波 章元兵 张子恒 周爽(上海科技大学生命科学与技术学院)
责编 | 叶水送
三十年前,实验生物学家在分析寄居于人类肠道的细菌的一个基因时,偶然发现一组重复回文密码。之后这类密码在其他细菌基因组陆续被发现。通过计算生物学家的缜密计算,判定该类密码是细菌抵制外敌入侵的关键手段。这个判定结果随后被实验生物学家在酸奶工厂得到证实。数年后,这类密码被利用,引发基因编辑领域的爆炸……这类密码的名字叫做CRISPR。
作为当今生命科学领域最火热的基因编辑技术,CRISPR因其高效、便捷、适用范围广,为科研工作者带来了福音,同时其广泛应用也促进了基础科研、农业、基础医学及临床治疗的发展。下面让我们穿越到三十年前,细数CRISPR系统的发现发展过程。
1987年,Nakata研究组在分析大肠杆菌(Escherichia coli)中基因iap及临近序列(flanking regions)时,偶然地发现在位于iap的3’端存在含有29个碱基的高度同源序列重复性出现,且这些重复序列被含32个碱基的序列间隔开,当时科学家并不清楚这种序列的生物学意义。随后的几年(1989年-1999年),陆续有相关研究指出类似的重复序列存在于多种细菌及古生菌中。2000年,Mojica和同事通过比对发现这种重复元件存在于20多种细菌及古生菌中,并将这种核酸序列命名为短规律性间隔重复序列(Short Regularly Spaced Repeats, SRSRs),因其高度保守性,猜测其一定具有重要的生物学功能。
CRISPR一词正式登上历史舞台还是2002年的事。Jansen实验室通过生物信息学分析,发现这种新型DNA序列家族只存在于细菌及古生菌中,而在真核生物及病毒中没有被发现,并将这种序列称为规律间隔成簇短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)。他们将临近CRISPR locus的基因命名为cas(CRISPR-associated),并发现了4个cas基因(cas1, cas2, cas3, cas4)。2005年,Mojica,Bolotin和Pourcel三个研究组指出CRISPR中的间隔序列来自于外来噬菌体或质粒,其中Mojica实验室惊喜地发现病毒无法感染携带有与病毒同源间隔序列的细胞,而易侵入那些没有间隔序列的细胞,由此他们提出CRISPR可能参与细菌的免疫功能的假说。
CRISPR能在细菌的免疫功能中起作用在2007首次得到实验证实。Horvath研究组发现嗜热链球菌被病毒入侵后整合了来自噬菌体基因组新的间隔区序列,同样的病毒再次入侵时细菌就有了抗性,使其免遭攻击。同时人为地去除或添加特定的间隔区序列,会影响细菌的抗性表型。因此,他们认为CRISPR及cas基因一起为嗜热链球菌提供了对噬菌体的抗性作用,同时抗性的特异性取决于CRISPR中的间隔区序列,细菌的这种免疫性是可以遗传的。至此,虽然科学家并不清楚CRISPR/Cas抵抗病毒的具体机制,但他们开始逐渐揭开其神秘的面纱。
2008年,Oost实验室揭示了宿主细胞中CRISPR的间隔序列如何在cas蛋白的协助下介导发挥抗病毒作用。他们发现在CRISPR转录后,cas蛋白会形成一个称为Cascade的复合物,裂解每个重复单元中的CRISPR RNA前体(pre-crRNA),但裂解产物都保留了间隔序列。在解旋酶cas3的作用下,成熟的CRISPR RNA(crRNA)发挥小向导RNA(small guide RNA)的角色,促使Cascade干预病毒的增殖。2009年,Mojica团队指出前间隔序列临近的PAM序列为原核生物中CRISPR/Cas发挥免疫识别提供了靶标。
2011年,Charpentier研究组通过对人类病原体化脓性链球菌的差异化RNA测序,揭示了反式编码crRNA(tracrRNA)参与pre-crRNA的加工成熟过程。他们指出,tracrRNA通过24个核苷酸与pre-crRNA中的重复序列互补配对,在保守的内源性RNA酶III和CRISPR相关的Csn1蛋白的参与下指导pre-cr RNA的成熟过程,这些组分对保护化脓性链球菌免受噬菌体DNA的入侵必不可少,研究揭示了crRNA成熟的新途径。
以上我们一直在介绍CRISPR/Cas的发现及细菌、古细菌如何利用该系统来沉默外来核酸以抵御病毒及质粒的入侵。CRISPR/Cas作为基因编辑系统被应用最早开始于2012年两位女神的强强联合,她们分别是来自加州大学伯克利分校的结构生物学家詹妮弗·杜德纳(Jennifer Doudna)和瑞典于默奥大学的埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)。她们通过体外实验证明:成熟的crRNA通过碱基互补配对与tracrRNA形成特殊的双链RNA结构,指导cas9蛋白在目标DNA上引起双链断裂。在与crRNA指导序列互补的位点,cas9蛋白的HNH核酸酶结构域切割crRNA的互补链,而cas9蛋白RuvC样结构域切割非互补链。当双tracrRNA:crRNA被嵌合到一条RNA时,同样可以指导cas9切割双链DNA。她们的研究证明,在双链RNA指导下切割双链DNA断裂的内切酶家族并揭示了CRISPR/Cas系统在RNA指导下进行基因编辑的巨大潜力。
之后就一发不可收拾,紧接着是2013年初的两篇Science和一篇Cell文章,它们分别由来自于哈佛大学医学院的George Church、麻省理工学院博德研究所的张锋以及加州大学旧金山分校系统及合成生物学中心的Lei S. Qi(目前就职于斯坦福大学)实验室,这三篇文章都将CRISPR/Cas系统成功应用到哺乳动物细胞中。其中Church研究组设计了II型CRISPR/Cas系统,在人类细胞中设计特定的gRNA。对于内源性AAVS1基因座,他们成功获得了293T细胞中10%至25%,K562细胞中13%至8%以及诱导多能干细胞中2%至4%的靶向率。他们同时表明这个过程依赖于CRISPR组件,是特定的序列;在同时引入多个gRNA时,可以实现对目标基因座的多重编辑。张锋实验室证实了cas9可以在小RNA的指导下在人类及小鼠细胞中对内源基因座实现精确切割,同时他们将cas9改造为缺口酶促进同源修复。Qi与同事则将II型CRISPR/Cas系统中的cas9蛋白改造成失去核酸内切酶活性的dCas9,将其与gRNA共表达,产生一种DNA识别复合物使其特异性地干扰转录延伸,RNA聚合酶或转录因子与DNA的结合达到抑制目标基因表达的目的。他们将其称为CRISPRi,实现了对大肠杆菌中基因的有效抑制,且没有明显的脱靶效应。而且可以实现同时抑制多个基因,他们表明CRISPRi也适用于哺乳动物细胞。很快人们利用CRISPR/Cas系统实现了对斑马鱼、真菌及细菌的基因编辑。2013年5月,Jaenisch研究组利用CRISPR/Cas介导的基因工程技术制造了在多个基因上含有多重突变的小鼠,极大地促进了体内多基因的功能学研究。随后,人们实现了对果蝇、线虫、大鼠、猪、羊、以及水稻、小麦、高粱等多种生物的基因编辑。
距开始利用CRISPR/Cas进行基因编辑不到一年时间里,人们就实现了用该系统来校正遗传疾病。2013年12月,李劲松研究组和Hans Clevers研究组利用CRISPR/Cas9系统分别校正了小鼠白内障及人干细胞中一种与囊肿性纤维化相关联的基因缺陷。同时,研究者通过向人类细胞转染慢病毒包装的sgRNA库,实现了对基因组范围的功能性筛选。2015年4月,黄军就和团队首次修饰人类胚胎DNA,为治疗一种在中国南方儿童中常见的遗传病——地中海贫血症提供了可能。
随着对CRISPR系统研究的不断深入,也暴露了一定的缺陷和局限性,如严重的脱靶效应。2015年9月,张锋研究组报道了一种不同于Cas9的新型2类CRISPR效应因子Cpf1。他们的研究证明,Cpf1是一种不依赖tracrRNA,由单个RNA介导的核酸内切酶。Cas9是在同一个位置同时剪切DNA分子的双链,形成的是平末端;而Cpf1剪切后形成是两个不同长度的链,被称之为黏性末端。同时Cpf1能够识别富含胸腺嘧啶(T)的PAM序列,可以扩展CRISPR的编辑范围。
已知的许多遗传疾病由点突变引起,然而目前纠正点突变的方法存在效率低或引起随机缺失或插入等缺陷。2016年4月,David R. Liu研究组报道了一种碱基编辑的新方法。他们将胞嘧啶脱氨酶与CRISPR/Cas9进行融合,在gRNA的指导下,不引起DNA双链断裂,直接实现胞嘧啶(C)到尿嘧啶(U)的转变,而DNA复制进一步使得U被T代替,从而实现C→T (or G→A)的转换。这种碱基编辑器可有效纠正多种与人类疾病相关的点突变。他们还发展了第二、第三代碱基编辑技术,进一步提高碱基编辑效率。在此基础上,上海科技大学陈佳研究组与合作者共同开发了一种增强型碱基编辑器。他们发现,将含有尿嘧啶DNA糖基化酶抑制剂(UGI)的质粒与sgRNA/BE3共同转染293FT细胞,经深度测序分析,与单独转染sgRNA/BE3相比,共转染的方法减低了错配频率并提高了C-到T-的替换效率。他们还发现UGI的表达水平与C-到T-的碱基替换效率成正相关。为了提高实验的方便性,研究者还将多个重复UGI与BE共表达在同一载体,与靶向不同基因座的多个sgRNA共同转染293FT细胞,结果表明这种增强型碱基编辑器大大提高了编辑效率。
2016年6月,张锋研究组发现一种来自纤毛菌(Leptotrichia shahii)的效应因子C2c2(现被称为cas13a),具有RNA介导的RNA酶功能。体外生化分析显示C2c2可在单个crRNA指导下剪切靶向单链RNA。细菌内,C2c2可被用来敲低特异性的mRNA,RNA酶活性依赖于HEPN结构域,C2c2是第一个被发现的靶向RNA的CRISPR效应因子。
2016年10月,第一个由CRISPR/Cas9编辑进行的临床治疗实验由Lu团队完成,研究者分离患有转移性非小细胞肺癌病人血液中的免疫细胞,特异性的敲除PD-1基因,对细胞扩增培养后输回患者体内以期抵抗癌症。
2017年10月,David R. Liu团队将编码tRNA腺嘌呤脱氨酶(TadA)的基因引入大肠杆菌内,经历了漫长的7代筛选后,开发出了一款全新的“碱基编辑器”,将进化后的TadA与CRISPR/Cas9系统融合,在不引起DNA链断裂的情况下实现了A•T到G•C的转换,且在人体细胞中,编辑效率超过了50%。这样就实现了C•G 到 T•A和A•T 到G•C的高效编辑,为多种遗传疾病的治疗提供了有效工具。