JAVA分布式锁的原理及实现
引题
比如在同一个节点上,两个线程并发的操作A的账户,都是取钱,如果不加锁,A的账户可能会出现负数,正确的方式是对账户acount进行加锁,即使用synchronized关键字,对其进行加锁后,当有线程访问时,会获得锁,并对其资源进行修改操作,其他的线程只有当该线程修改完成后并且释放锁,才能对其访问,这种加锁--修改--释放锁的模式就解决了多个线程同时修改资源而造成的错误。
但是,在分布式集群系统中,两个节点上的两个进程需要执行同一段代码块,访问同一个临界资源,如何保证不同节点的进程同步执行呢?
一、什么是分布式锁(What)
什么是锁
在单进程的系统中,当存在多个线程可以同时改变某个变量(可变共享变量)时,就需要对变量或代码块做同步,使其在修改这种变量时能够线性执行消除并发修改变量。
而同步的本质是通过锁来实现的。为了实现多个线程在一个时刻同一个代码块只能有一个线程可执行,那么需要在某个地方做个标记,这个标记必须每个线程都能看到,当标记不存在时可以设置该标记,其余后续线程发现已经有标记了则等待拥有标记的线程结束同步代码块取消标记后再去尝试设置标记。这个标记可以理解为锁。
不同地方实现锁的方式也不一样,只要能满足所有线程都能看得到标记即可。如java中synchronize是在对象头设置标记,Lock接口的实现类基本上都只是某一个volitile修饰的int型变量其保证每个线程都能拥有对该int的可见性和原子修改,linux内核中也是利用互斥量或信号量等内存数据做标记。
分布式情况
此处主要指集群模式下,多个相同服务同时开启.
分布式与单机情况下最大的不同在于其不是多线程而是多进程。
多线程由于可以共享堆内存,因此可以简单的采取内存作为标记存储位置。而进程之间甚至可能都不在同一台物理机上,因此需要将标记存储在一个所有进程都能看到的地方。
分布式锁
当在分布式模型下,数据可能只有一份,此时需要利用锁的技术控制某一时刻修改数据的进程数。
与单机模式下的锁不同,分布式锁不仅需要保证进程可见,还需要考虑进程与锁之间的网络问题。(分布式情况下之所以问题变得复杂,主要就是需要考虑到网络的延时和不可靠)
分布式锁还是可以将标记存在内存,只是该内存不是某个进程分配的内存而是公共内存如Redis、Memcache。至于利用数据库、文件等做锁与单机的实现是一样的,只要保证标记能互斥就行。
二、为什么需要分布式锁(Why)
哪些场景需要用
场景一:比较敏感的数据比如金额修改,同一时间只能有一个人操作,想象下2个人同时修改金额,一个加金额一个减金额,为了防止同时操作造成数据不一致,需要锁,如果是数据库需要的就是行锁或表锁,如果是在集群里,多个客户端同时修改一个共享的数据就需要分布式锁。
场景二:比如多台机器都可以定时执行某个任务,如果限制任务每次只能被一台机器执行,不能重复执行,就可以用分布式锁来做标记。
场景三:比如秒杀场景,要求并发量很高,那么同一件商品只能被一个用户抢到,那么就可以使用分布式锁实现。
三、分布式锁的几种实现方式(How)
针对分布式锁的实现,目前比较常用的有以下几种方案:
1、基于数据库实现分布式锁
2、基于缓存(redis,memcached,tair)实现分布式锁
3、基于Zookeeper实现分布式锁
在分析这几种实现方案之前我们先来想一下,我们需要的分布式锁应该是怎么样的?(这里以方法锁为例,资源锁同理)
可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个进程执行。
A 这把锁要是一把可重入锁(避免死锁)
B 这把锁最好是一把阻塞锁(根据业务需求考虑要不要这条)
C 有高可用的获取锁和释放锁功能
D 获取锁和释放锁的性能要好
1、基于数据库实现分布式锁
基于数据库表
要实现分布式锁,最简单的方式可能就是直接创建一张锁表,然后通过操作该表中的数据来实现了。
当我们要锁住某个方法或资源时,我们就在该表中增加一条记录,想要释放锁的时候就删除这条记录。
创建这样一张数据库表:
CREATETABLE`methodLock` (
`id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键',
`method_name` varchar(64) NOT NULL DEFAULT ''COMMENT '锁定的方法名',
`desc` varchar(1024) NOT NULL DEFAULT '备注信息',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '保存数据时间,自动生成',
PRIMARYKEY(`id`),
UNIQUEKEY `uidx_method_name` (`method_name `)USING BTREE
)ENGINE=InnoDB DEFAULTCHARSET=utf8 COMMENT='锁定中的方法';
当我们想要锁住某个方法时,执行以下SQL:
insert into methodLock(method_name ,desc) values(‘method_name’ ,‘desc’)
因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。
当方法执行完毕之后,想要释放锁的话,需要执行以下Sql:
delete from methodLock where method_name ='method_name'
上面这种简单的实现有以下几个问题:
1、这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。
2、这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。
3、这把锁只能是非阻塞的,因为数据的insert操作,一旦插入失败就会直接报错。没有获得锁的线程并不会进入排队队列,要想再次获得锁就要再次触发获得锁操作。
4、这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。
当然,我们也可以有其他方式解决上面的问题。
数据库是单点?搞两个数据库,数据之前双向同步。一旦挂掉快速切换到备库上。
没有失效时间?只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。
非阻塞的?搞一个while循环,直到insert成功再返回成功。
非重入的?在数据库表中加个字段,记录当前获得锁的机器的主机信息和线程信息,那么下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了。
基于数据库排他锁
除了可以通过增删操作数据表中的记录以外,其实还可以借助数据库自带的锁来实现分布式的锁。
我们还用刚刚创建的那张数据库表。可以通过数据库的排他锁来实现分布式锁。 基于MySql的InnoDB引擎,可以使用以下方法来实现加锁操作:
public boolean lock(){
connection.setAutoCommit(false)
while(true){
try{
result= select * from methodLock where method_name=xxx for update;
if(result==null){
return true;
}
}catch(Exception e){
}
sleep(1000);
}
return false;
}
在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁(这里再多提一句,InnoDB引擎在加锁的时候,只有通过索引进行检索的时候才会使用行级锁,否则会使用表级锁。这里我们希望使用行级锁,就要给method_name添加索引,值得注意的是,这个索引一定要创建成唯一索引,否则会出现多个重载方法之间无法同时被访问的问题。重载方法的话建议把参数类型也加上。)。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。
我们可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:
public void unlock(){
connection.commit();
}
通过connection.commit()操作来释放锁。
这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。
阻塞锁?for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。
但是还是无法解决数据库单点和可重入问题。
这种方式还有一个问题,就是我们要使用排他锁来进行分布式锁的lock,那么一个排他锁长时间不提交,就会占用数据库连接。一旦类似的连接变得多了,就可能把数据库连接池撑爆!
总结
总结一下使用数据库来实现分布式锁的方式,这两种方式都是依赖数据库的一张表,一种是通过表中的记录的存在情况确定当前是否有锁存在,另外一种是通过数据库的排他锁来实现分布式锁。
数据库实现分布式锁的优点:
1、直接借助数据库,容易理解。
数据库实现分布式锁的缺点:
1、会有各种各样的问题,在解决问题的过程中会使整个方案变得越来越复杂。
2、操作数据库需要一定的开销,性能问题需要考虑。
3、使用数据库的行级锁并不一定靠谱,尤其是当我们的锁表并不大的时候。
2 基于缓存实现分布式锁
相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点。而且很多缓存是可以集群部署的,可以解决单点问题。
目前有很多成熟的缓存产品,包括Redis,memcached以及阿里内部用的Tair。
这里以Redis为例:
Redis分布式锁的基本流程并不难理解,但要想写得尽善尽美,也并不是那么容易。在这里,我们需要先了解分布式锁实现的三个核心要素:
1.加锁
最简单的方法是使用setnx命令。key是锁的唯一标识,按业务来决定命名。比如想要给一种商品的秒杀活动加锁,可以给key命名为 “lock_sale_商品ID” 。而value设置成什么呢?我们可以姑且设置成1。加锁的伪代码如下:
setnx(key,1)
当一个线程执行setnx返回1,说明key原本不存在,该线程成功得到了锁;当一个线程执行setnx返回0,说明key已经存在,该线程抢锁失败。
2.解锁
有加锁就得有解锁。当得到锁的线程执行完任务,需要释放锁,以便其他线程可以进入。释放锁的最简单方式是执行del指令,伪代码如下:
del(key)
释放锁之后,其他线程就可以继续执行setnx命令来获得锁。
3.锁超时
锁超时是什么意思呢?如果一个得到锁的线程在执行任务的过程中挂掉,来不及显式地释放锁,这块资源将会永远被锁住,别的线程再也别想进来。
所以,setnx的key必须设置一个超时时间,以保证即使没有被显式释放,这把锁也要在一定时间后自动释放。setnx不支持超时参数,所以需要额外的指令,伪代码如下:
expire(key, 30)
综合起来,我们分布式锁实现的第一版伪代码如下:
if(setnx(key,1) == 1){
expire(key,30)
try {
do something ......
} finally {
del(key) }
}
上面的伪代码中,存在着三个致命问题:
1、setnx和expire的非原子性
设想一个极端场景,当某线程执行setnx,成功得到了锁:
setnx刚执行成功,还未来得及执行expire指令,节点1 突然挂掉了。
这样一来,这把锁就没有设置过期时间,变得“长生不老”,别的线程再也无法获得锁了。
怎么解决呢?setnx指令本身是不支持传入超时时间的,幸好Redis 2.6.12以上版本为set指令增加了可选参数,伪代码如下:
set(key,1,30,NX)
这样就可以取代setnx指令。
2、del 导致误删
又是一个极端场景,假如某线程成功得到了锁,并且设置的超时时间是30秒。
如果某些原因导致线程A执行的很慢很慢,过了30秒都没执行完,这时候锁过期自动释放,线程B得到了锁。
随后,线程A执行完了任务,线程A接着执行del指令来释放锁。但这时候线程B还没执行完,线程A实际上删除的是线程B加的锁。
怎么避免这种情况呢?可以在del释放锁之前做一个判断,验证当前的锁是不是自己加的锁。
至于具体的实现,可以在加锁的时候把当前的线程ID当做value,并在删除之前验证key对应的value是不是自己线程的ID。
加锁:
String threadId = Thread.currentThread().getId()
set(key,threadId ,30,NX)
解锁:
if(threadId .equals(redisClient.get(key))){
del(key)}
但是,这样做又隐含了一个新的问题,判断和释放锁是两个独立操作,不是原子性。
我们都是追求极致的程序员,所以这一块要用Lua脚本来实现:
String luaScript = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
redisClient.eval(luaScript , Collections.singletonList(key), Collections.singletonList(threadId));
这样一来,验证和删除过程就是原子操作了。
3.、出现并发的可能性
还是刚才第二点所描述的场景,虽然我们避免了线程A误删掉key的情况,但是同一时间有A,B两个线程在访问代码块,相当于锁的作用失效了。
怎么办呢?我们可以让获得锁的线程开启一个守护线程,用来给快要过期的锁“续命”。
当过去了29秒,线程A还没执行完,这时候守护线程会执行expire指令,为这把锁“续命”20秒。守护线程从第29秒开始执行,每20秒执行一次。
当线程A执行完任务,会显式关掉守护线程。
另一种情况,如果节点1忽然断电,由于线程A和守护线程在同一个进程,守护线程也会停下。这把锁到了超时的时候,没人给它续命,也就自动释放了。
总结
可以使用缓存来代替数据库来实现分布式锁,这个可以提供更好的性能,同时,很多缓存服务都是集群部署的,可以避免单点问题。并且很多缓存服务都提供了可以用来实现分布式锁的方法,比如Tair的put方法,redis的setnx方法等。并且,这些缓存服务也都提供了对数据的过期自动删除的支持,可以直接设置超时时间来控制锁的释放。
使用缓存实现分布式锁的优点:
1、性能好,实现起来较为方便。
使用缓存实现分布式锁的缺点:
1、通过超时时间来控制锁的失效时间并不是十分的靠谱。
3、 基于Zookeeper实现分布式锁
让我们来回顾一下Zookeeper节点的概念:
Zookeeper的数据存储结构就像一棵树,这棵树由节点组成,这种节点叫做Znode。
Znode分为四种类型:
1.持久节点 (PERSISTENT)
默认的节点类型。创建节点的客户端与zookeeper断开连接后,该节点依旧存在 。
2.持久节点顺序节点(PERSISTENT_SEQUENTIAL)
所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号:
3.临时节点(EPHEMERAL)
和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除:
4.临时顺序节点(EPHEMERAL_SEQUENTIAL)
顾名思义,临时顺序节点结合和临时节点和顺序节点的特点:在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号;当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。
Zookeeper分布式锁的原理
Zookeeper分布式锁恰恰应用了临时顺序节点。具体如何实现呢?让我们来看一看详细步骤:
获取锁
首先,在Zookeeper当中创建一个持久节点ParentLock。当第一个客户端想要获得锁时,需要在ParentLock这个节点下面创建一个临时顺序节点 Lock1。
之后,Client1查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock1是不是顺序最靠前的一个。如果是第一个节点,则成功获得锁。
这时候,如果再有一个客户端 Client2 前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock2。
Client2查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock2是不是顺序最靠前的一个,结果发现节点Lock2并不是最小的。
于是,Client2向排序仅比它靠前的节点Lock1注册Watcher,用于监听Lock1节点是否存在。这意味着Client2抢锁失败,进入了等待状态。
这时候,如果又有一个客户端Client3前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock3。
Client3查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock3是不是顺序最靠前的一个,结果同样发现节点Lock3并不是最小的。
于是,Client3向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock2节点是否存在。这意味着Client3同样抢锁失败,进入了等待状态。
这样一来,Client1得到了锁,Client2监听了Lock1,Client3监听了Lock2。这恰恰形成了一个等待队列,很像是Java当中ReentrantLock所依赖的AQS(AbstractQueuedSynchronizer)。
那么,zookeeper如何释放锁呢?
释放锁的过程很简单:只需要删除对应的子节点就好了。
释放锁
释放锁分为两种情况:
1.任务完成,客户端显式释放
当任务完成时,Client1会显示调用删除节点Lock1的指令。
2.任务执行过程中,客户端崩溃
获得锁的Client1在任务执行过程中,如果Duang的一声崩溃,则会断开与Zookeeper服务端的链接。根据临时节点的特性,相关联的节点Lock1会随之自动删除。
由于Client2一直监听着Lock1的存在状态,当Lock1节点被删除,Client2会立刻收到通知。这时候Client2会再次查询ParentLock下面的所有节点,确认自己创建的节点Lock2是不是目前最小的节点。如果是最小,则Client2顺理成章获得了锁。
同理,如果Client2也因为任务完成或者节点崩溃而删除了节点Lock2,那么Client3就会接到通知。
Zookeeper和Redis分布式锁的比较
下面的表格总结了Zookeeper和Redis分布式锁的优缺点:
有人说Zookeeper实现的分布式锁支持可重入,Redis实现的分布式锁不支持可重入,这是错误的观点。两者都可以在客户端实现可重入逻辑。
在Apache的开源框架 Apache Curator 中,包含了对Zookeeper分布式锁的实现,有兴趣的小伙伴可以看看源码:
https://github.com/apache/curator/
使用ZK实现的分布式锁好像完全符合了本文开头我们对一个分布式锁的所有期望。但是,其实并不是,Zookeeper实现的分布式锁其实存在一个缺点,那就是性能上可能并没有缓存服务那么高。因为每次在创建锁和释放锁的过程中,都要动态创建、销毁临时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后将数据同不到所有的Follower机器上。
其实,使用Zookeeper也有可能带来并发问题,只是并不常见而已。考虑这样的情况,由于网络抖动,客户端和ZK集群的session连接断了,那么zk以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。就可能产生并发问题。这个问题不常见是因为zk有重试机制,一旦zk集群检测不到客户端的心跳,就会重试,Curator客户端支持多种重试策略。多次重试之后还不行的话才会删除临时节点。(所以,选择一个合适的重试策略也比较重要,要在锁的粒度和并发之间找一个平衡。)
总结
使用Zookeeper实现分布式锁的优点:
1、有效的解决单点问题,不可重入问题,非阻塞问题以及锁无法释放的问题。实现起来较为简单。
使用Zookeeper实现分布式锁的缺点:
2、性能上不如使用缓存实现分布式锁。 需要对ZK的原理有所了解。
三种方案的比较
上面几种方式,哪种方式都无法做到完美。就像CAP一样,在复杂性、可靠性、性能等方面无法同时满足,所以,根据不同的应用场景选择最适合自己的才是王道。
从理解的难易程度角度(从低到高)
数据库 > 缓存 > Zookeeper
从实现的复杂性角度(从低到高)
Zookeeper >= 缓存 > 数据库
从性能角度(从高到低)
缓存 > Zookeeper >= 数据库
从可靠性角度(从高到低)
Zookeeper > 缓存 > 数据库
背景知识
目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,通常都是牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。