机器学习-算法理论

线性系统在广告产品中的发展

2021-12-13  本文已影响0人  shudaxu

在各种体系设计与问题建模中,线性系统往往能帮助我们做很多简化,使得很多问题的求解上变得更容易,并且有更好的解析解,更优的bound,更好的收敛理论。例如各种规划,控制理论中对线性系统的研究[1]。
类似地,人类能够直观理解以及操作的系统,往往都是线性的系统,如果系统高度地非线性,人类将难以操作。往往只能用计算机进行更复杂的模拟,然后人工最多进行一些“单一的”,“线性的”超参的调整。譬如现代汽车的加速减速,对油门踏板的输入都经过了复杂的计算,来对整个系统进行调整以控制其状态,来模拟达成“线性”的状态。
因此,通常随着系统本身越来越复杂,业界做法都是用计算机模拟其非线性部分,然后抽象出一个“线性”的控制器暴露给用户。这样的设计与发展路径同样存在于现代的广告机制设计与产品的演化当中。

线性出价的便利:

转化非线性带来的衍生方案

由于不同出价点有以下关系:cpc\_bid = cpa\_bid * cvr,其中cvr是根据流量而变化的,因此cpc_bid和cpa_bid并不是线性关系。以vec的视角来认知,即他们无法表示为:\vec{cpc bid} = k * \vec {cpa bid}k为标量。因此,对于广告主来说,当他们调整cpc_bid的时候,其实并没有达成线性地调整潜在的cpa_bid的目的。导致其cpa转化成本的控制是非线性的,需要用别的手段来保证。

系统参数与误差的线性关系

更进一步,在整个系统中还存在很多变量(自变量,待解因变量)。他们之间是否是线性关系其实也很重要,影响了很多方案的设计。特别是反馈控制与优化求解算法的方案。

Refer
[1]Control theory for linear systems.

[2]BSD:
https://www.jianshu.com/p/a3e029ccd7d6

[3]是否要摒弃这些定向策略?
当然,这里也并不是要产品们完全摒弃这些“过时”的技术。任何技术都有其时效性与适用场景。
1、譬如在搜索广告中,流量价值被搜索词细粒度的划分,这种条件下,ocpc的提升也许就并不显著。
2、还有对于技术能力有限,数据能力有限的小流量平台。要为不同行业的广告主都进行精准的cvr估计也是很难的,不如一步步做好精细化的标签帮助广告主做流量划分。

上一篇下一篇

猜你喜欢

热点阅读