MySQL 8.0窗口函数

2021-12-18  本文已影响0人  lz做过前端

MySQL 8.0窗口函数

团队介绍

网易乐得DBA组,负责网易乐得电商、网易邮箱、网易技术部数据库日常运维,负责数据库私有云平台的开发和维护,负责数据库及数据库中间件Cetus的开发和测试等等。

一、窗口函数的使用场景

作为IT人士,日常工作中经常会遇到类似这样的需求:

医院看病,怎样知道上次就医距现在的时间?环比如何计算?怎么样得到各部门工资排名前N名员工列表?查找各部门每人工资占部门总工资的百分比?

对于这样的需求,使用传统的SQL实现起来比较困难。这类需求都有一个共同的特点,需要在单表中满足某些条件的记录集内部做一些函数操作,不是简单的表连接,也不是简单的聚合可以实现的,通常会让写SQL的同学焦头烂额、绞尽脑汁,费了大半天时间写出来一堆长长的晦涩难懂的自连接SQL,且性能低下,难以维护。

要解决此类问题,最方便的就是使用窗口函数。

二、MySQL窗口函数简介

MySQL从8.0开始支持窗口函数,这个功能在大多商业数据库和部分开源数据库中早已支持,有的也叫分析函数。

什么叫窗口?

窗口的概念非常重要,它可以理解为记录集合,窗口函数也就是在满足某种条件的记录集合上执行的特殊函数。对于每条记录都要在此窗口内执行函数,有的函数随着记录不同,窗口大小都是固定的,这种属于静态窗口;有的函数则相反,不同的记录对应着不同的窗口,这种动态变化的窗口叫滑动窗口。

窗口函数和普通聚合函数也很容易混淆,二者区别如下:

下面是一个窗口函数的简单例子:

image

上面例子中,row_number()over(partition by user_no order by amount desc)这部分都属于窗口函数,它的功能是显示每个用户按照订单金额从大到小排序的序号。

按照功能划分,可以把MySQL支持的窗口函数分为如下几类:

三、窗口函数如何使用

窗口函数的基本用法如下:

函数名([expr]) over子句

其中,over是关键字,用来指定函数执行的窗口范围,如果后面括号中什么都不写,则意味着窗口包含满足where条件的所有行,窗口函数基于所有行进行计算;如果不为空,则支持以下四种语法来设置窗口:

select * from

(

select row_number()over w as row_num,

order_id,user_no,amount,create_date

from order_tab

WINDOW w AS (partition by user_no order by amount desc)

)t ;

image

从结果可以看出,order_id为5订单属于边界值,没有前一行,因此平均订单金额为(900+800)/2=850;order_id为4的订单前后都有订单,所以平均订单金额为(900+800+300)/3=666.6667,以此类推就可以得到一个基于滑动窗口的动态平均订单值。此例中,窗口函数用到了传统的聚合函数avg(),用来计算动态的平均值。

对于滑动窗口的范围指定,有两种方式,基于行和基于范围,具体区别如下:

基于行:

通常使用BETWEEN frame_start AND frame_end语法来表示行范围,frame_start和frame_end可以支持如下关键字,来确定不同的动态行记录:

CURRENT ROW 边界是当前行,一般和其他范围关键字一起使用

UNBOUNDED PRECEDING 边界是分区中的第一行

UNBOUNDED FOLLOWING 边界是分区中的最后一行

expr PRECEDING 边界是当前行减去expr的值

expr FOLLOWING 边界是当前行加上expr的值

比如,下面都是合法的范围:

rows BETWEEN 1 PRECEDING AND 1 FOLLOWING 窗口范围是当前行、前一行、后一行一共三行记录。

rows UNBOUNDED FOLLOWING 窗口范围是当前行到分区中的最后一行。

rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING 窗口范围是当前分区中所有行,等同于不写。

基于范围:

和基于行类似,但有些范围不是直接可以用行数来表示的,比如希望窗口范围是一周前的订单开始,截止到当前行,则无法使用rows来直接表示,此时就可以使用范围来表示窗口:INTERVAL 7 DAY PRECEDING。Linux中常见的最近1分钟、5分钟负载是一个典型的应用场景。

有的函数不管有没有frame子句,它的窗口都是固定的,也就是前面介绍的静态窗口,这些函数包括如下:

接下来我们以上例的订单表为例,来介绍每个函数的使用方法。表中各字段含义按顺序分别为订单号、用户id、订单金额、订单创建日期。

四、序号函数

序号函数——row_number() / rank() / dense_rank()。

image

此时可以使用ROW_NUMBER()函数按照用户进行分组并按照订单日期进行由大到小排序,最后查找每组中序号<=3的记录。

对于用户‘002’的订单,大家发现订单金额为800的有两条,序号随机排了1和2,但很多情况下二者应该是并列第一,而订单为600的序号则可能是第二名,也可能为第三名,这时候,row_number就不能满足需求,需要rank和dense_rank出场。

这两个函数和row_number()非常类似,只是在出现重复值时处理逻辑有所不同。

上面例子我们稍微改一下,需要查询不同用户的订单中,按照订单金额进行排序,显示出相应的排名序号,SQL中用row_number() / rank() / dense_rank()分别显示序号,我们看一下有什么差别:

image

上面红色粗体显示了三个函数的区别,row_number()在amount都是800的两条记录上随机排序,但序号按照1、2递增,后面amount为600的的序号继续递增为3,中间不会产生序号间隙;rank()/dense_rank()则把amount为800的两条记录序号都设置为1,但后续amount为600的需要则分别设置为3(rank)和2(dense_rank)。即rank()会产生序号相同的记录,同时可能产生序号间隙;而dense_rank()也会产生序号相同的记录,但不会产生序号间隙。

五、分布函数

分布函数——percent_rank()/cume_dist()。

percent_rank()

image

从结果看出,percent列按照公式(rank - 1) / (rows - 1)带入rank值(row_num列)和rows值(user_no为‘001’和‘002’的值均为5)。

cume_dist()

SQL如下:

image

列cume显示了预期的数据分布结果。

六、前后函数

前后函数——lead(n)/lag(n)。

SQL如下:

image

内层SQL先通过lag函数得到上一次订单的日期,外层SQL再将本次订单和上次订单日期做差得到时间间隔diff。

七、头尾函数

头尾函数——first_val(expr)/last_val(expr)。

SQL如下:

image

结果和预期一致,比如order_id为4的记录,first_amount和last_amount分别记录了用户‘001’截止到时间2018-01-03 00:00:00为止,第一条订单金额100和最后一条订单金额800,注意这里是按时间排序的最早订单和最晚订单,并不是最小金额和最大金额订单。

八、其他函数

其他函数——nth_value(expr,n)/nfile(n)。

nth_value(expr,n)

SQL如下:

image

nfile(n)

SQL如下:

image

此函数在数据分析中应用较多,比如由于数据量大,需要将数据平均分配到N个并行的进程分别计算,此时就可以用NFILE(N)对数据进行分组,由于记录数不一定被N整除,所以数据不一定完全平均,然后将不同桶号的数据再分配。

九、聚合函数作为窗口函数

SQL如下:

image

除了这几个常用的聚合函数,还有一些也可以使用,比如BIT_AND()、STD()等等,具体查看官方文档。

窗口函数非常有意思,对于一些使用常规思维无法实现的SQL需求,大家尝试一下窗口函数吧,相信会有意想不到的收获。

上一篇 下一篇

猜你喜欢

热点阅读