转载:什么是TCP/IP协议?三次握手指的是什么?为什么不是两次
1.背景介绍
要想了解什么是TCP/IP协议,就要知道什么是网络协议。书本上的定义:网络协议是为计算机网络中进行数据交换而建立的规则、标准或约定的集合。
中国人之间交流使用汉语,要遵循汉语的语法结构和发音;那如果我们跟英国人交流的话,就要使用英语的语法结构和发音;我们人与人之间交流所用的语言就是一种协议。对于计算机来说,两台机器之间的通信就要制定各种各样的协议,例如:文件传输使用TCP协议,域名系统使用DNS协议。数据根据协议规定的内容进行传输,这样就实现了两台机器之间的通信。
总的来说:网络协议就是人为规定的一套通信规范,只要双方都遵循这个规范,就能实现交流。
TCP/IP具体含义:从字面意义上讲,可能会认为 TCP/IP 是指 TCP 和 IP 两种协议。然而多数情况下,它只是利用ip进行通信时所必须用到的协议群的统称。具体来说,IP 或 ICMP、TCP 或 UDP、TELNET 或 FTP、以及 HTTP 等都属于 TCP/IP 协议。他们与 TCP 或 IP 的关系紧密,是互联网必不可少的组成部分。TCP/IP 一词泛指这些协议,因此,有时也称 TCP/IP 为网际协议群。
2.知识剖析
TCP/IP协议族中有一个重要的概念是分层,TCP/IP协议按照层次分为以下四层:
应用层、传输层、网络层、数据链路层。提到协议分层,通常会联想到OSI的七层协议经典架构,但是TCP/IP协议族的结构则稍有不同。如图所示
TCP/IP协议族按照层次由上到下,层层包装。
(1)最上面的就是应用层了,这里面有http,ftp,等等我们熟悉的协议。
TCP/IP的分层中,将OSI参考模型中的会话层、表示层和应用层的功能都集中到了应用程序中实现。
TCP/IP应用的架构绝大多数属于客户端/服务器模型。
应用层的主要应用场景:
浏览器和服务端之间通信所用的协议是HTTP协议,所传输数据的主要格式为HTML。
发送电子邮件时用到的协议是SMTP。
文件传输(FTP)
远程登录常用TELNET与SSH两种协议。远程登录是指登录到远程的计算机上,使那台计算机上的程序得以运行的一种功能。
网络管理(SNMP)
(2)第二层则是传输层,著名的TCP和UDP协议就在这个层次。
传输层最主要的功能是能够让应用程序之间实现通信,并且定义了两种服务质量不同的协议,即:传输控制协议TCP和用户数据报协议UDP。
TCP协议是一个面向连接的、可靠的协议。它可以保证两端通信主机之间的通信可达。在发送端,它负责把上层传送下来的字节流分成报文段并传递给下层。在接收端,它负责把收到的报文进行重组后递交给上层。TCP协议还要处理端到端的流量控制,以避免缓慢接收的接收方没有足够的缓冲区接收发送方发送的大量数据.
UDP传送数据前并不与对方建立连接,对接收到的数据也不发送确认信号,发送端不知道数据是否会正确接收,当然也不用重发,所以说UDP是无连接的、不可靠的一种数据传输协议。
UDP常用在分组数据较少或多播、广播通信以及视频通信等多媒体领域(即时通信)。
(3)第三层是网络层,IP协议就在这里,它负责对数据加上IP地址和其他的数据以确定传输的目标。
也称作互联网层,是整个TCP/IP协议栈的核心。它的功能是把分组发往目标网络或主机。同时,为了尽快地发送分组,可能需要沿不同的路径同时进行分组传递。因此,分组到达的顺序和发送的顺序可能不同,这就需要上层必须对分组进行排序。
网络层定义了分组格式和协议,即IP协议(Internet Protocol)。另外的还有ICMP协议(Internet互联网控制报文协议),以及IGMP协议(Internet组管理协议)。
IP是一种网络层协议,提供的是一种不可靠的服务,它只是尽可能快地把分组从一端送到另一端,但是并不提供任何可靠性保证。同时被TCP和UDP使用。TCP和UDP的每组数据都通过端系统和每个中间路由器中的IP层在互联网中进行传输。
ICMP是IP协议的附属协议。IP层用它来与其他主机或路由器交换错误报文和其他重要信息。
IGMP是Internet组管理协议。它用来把一个UDP数据报多播到多个主机。
(4)第四层是叫数据链路层,也称作网络接口层,通常包括操作系统中的设备驱动程序和计算机中对应的网络接口卡。链路层为待传送的数据加入一个以太网协议头,并进行CRC编码,为最后的数据传输做准备。
3.常见问题
1、TCP/IP协议通信的过程
通信的过程其实就对应着数据装包与拆包的过程。装包的过程,数据发送方每层不断地封装首部,添加一些信息用于传输,确保能传输到目的地。拆包的过程,数据接收方每层不断地拆除首部,得到最终传输的数据。(图例)
每个分层中,都会对所发送的数据附加一个首部,在这个首部中包含了该层必要的信息,如发送的目标地址以及协议相关信息。通常,为协议提供的信息为包首部,所要发送的内容为数据。在下一层的角度看,从上一层收到的包全部都被认为是本层的数据。
2、如何建立TCP/IP连接?
TCP传输控制协议,是一个面向连接的协议。在TCP/IP协议中,TCP协议提供可靠的连接服务,连接是通过三次握手进行初始化的。所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。三次握手的目的是同步连接双方的序列号和确认号并交换 TCP窗口大小信息。
TCP报文格式(图)
(1)序列号:Sql序号,用来标识数据包,发起方发送数据时对此进行标记。
(2)确认序号:Ack序号,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
(3)标志位:共6个,即SYN、ACK、PSH、RST、URG、FIN
1)SYN:发起一个请求。 2)ACK:确认序号有效(表示对请求的响应)。
3)URG:紧急指针(urgent pointer)有效。 4)PSH:接收方应该尽快将这个报文交给应用层。
5)RST:重置连接。 6)FIN:释放一个连接。
需要注意的是:
(A)不要将确认序号Ack与标志位中的ACK搞混了。
(B)确认方Ack=发起方Seq+1,两端配对。
第一次握手:客户端发送一个TCP标志位SYN=1,ACK=0的数据包给服务端,并随机会产生一个Seq=J.当服务端接收到这个数据后,服务端由SYN=1可知客户端是想要建立连接;
第二次握手:服务端要对客户端的联机请求进行确认,向客户端发送应答号ACK=1、SYN=1 确认号Ack=J+1,此值是客户端的序列号加1,还会产生一个随机的序列号Seq=K,这样就告诉客户端可以进行连接;
第三次握手:客户端收到数据后检查Ack是否为J+1,以及标志位ACK的值是否为1,若为1,则会发送ACK=1、确认号码Ack=K+1,告诉服务端,你的请求连接被确认,连接可以建立,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
3、为什么要三次握手?
为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。
三次握手是在安全可靠的基础上,握手次数最少的方案。两次握手并不能保证可靠性。四次握手又浪费了效率,当然,有的需要更高安全性的地方,是可以有N次握手协议的,但那是特殊情况。
4、IP包如何路由至目标地址?
IP包有固定的报文格式,报头有所需要参数。如:源端口、目标端口、确认序号和标志域等。
5、详细介绍IP、TCP和DNS。
IP协议:IP协议的作用在于把各种数据包准确无误的传递给对方,其中两个重要的条件是IP地址,和MAC地址。由于IP地址是稀有资源,不可能每个人都拥有一个IP地址,所以我们通常的IP地址是路由器给我们生成的IP地址,路由器里面会记录我们的MAC地址。而MAC地址是全球唯一的,除去人为因素外不可能重复。
TCP协议:如果说IP协议是找到对方的详细地址。那么TCP协议就是把安全的把东西带给对方。各有分工,互不冲突。
按层次分,TCP属于传输层,提供可靠的字节流服务。所谓的字节流服务是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。而可靠的传输服务是指,能够把数据准确可靠地传给对方。总之,TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方。
DNS:(Domain names System)
和HTTP协议一样是处于应用层的服务,提供域名到IP地址之间的解析服务。互联网之间是通过IP地址通信的,但是IP地址并不符合认得记忆习惯,人喜欢记忆有意义的字词。所以DNS服务就为了解决这个问题而生的。
————————————————
版权声明:本文为CSDN博主「weixin_40636513」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40636513/article/details/80269951
为什么必须是三次握手?
大家都知道传输层(点击这里去传输层)中的TCP协议是面向连接的,提供可靠的连接服务,其中最出名的就是三次握手和四次挥手,今天先讲解三次握手(四次挥手点这里),如下图
喜欢钻牛角尖的我在学习三次握手的时候就想到了几个问题:为什么三次握手是三次?不是一次、两次或者更多?如果是两次或者是一次会出现什么情况?带着这个问题我找了好多资料,发现了其中的奥秘。
一次握手的情况:
由于TCP是面向连接的,一次很明显时不可能的,因为客户端发出连接消息后,却没有接收到来自服务端的回应,客户端就无法确定服务端接是否收到了连接请求,当然也就不能确定是否连接成功。
两次握手的情况:
既然一次客户端接收不到服务端的回应,那就连接两次,接收到回应就说明服务端接收到了连接请求,可以连理连接了。结果并不是这样。
如果客户端想建立连接,给服务端发了一个连接请求(SYN),但是由于网络中种种情况,导致没有及时到达服务端,这就导致客户端在很长一段时间中没有收到回复消息(ACK),这时客户端又给服务端发送一个SYN,这次的发送和接收的很顺利,很快就收到了ACK,但是这时之前的SYN终于到了服务端,服务端规规矩矩的为这个SYN申请资源,然后返回ACK。由于之前的SYN已经失效了,所以客户端也不会去理会这个ACK,但是傻乎乎的服务端并不知道这个SYN已经失效了,一直为他委会着资源,这就造成了资源的浪费。
三次握手的情况:
一发一收的两次握手既然不行,那么三次握手就可以了吗?接着往下看。
在两次握手中服务端不知道当前这个SYN是不是有效的,三次握手就很好的解决了这个问题,第三次握手就是客户端给服务端回复第二次握手,这也就是说服务端会等第三次握手的到来,如果第三次握手迟迟不来,服务端就可以识别这个SYN是无效的,就会将他的资源释放了。还有一种情况就是第三次握手由于网络中的种种原因失败了,这时候客户端认为自己已经连接好了,就会给服务端发送数据,服务端由于没有收到第三次握手,就会以RST包对客户端响应,收到RST的的客户端就知道第三次握手没有成功,就会重新连接。在谢希仁著《计算机网络》第四版中讲“三次握手”的目的是“为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误”。
四次握手和两次握手的情况一样,五次握手和三次握手的情况一样,以此类推,奇数次握手的情况与三次握手相同,同理偶数次握手与两次握手一样,所以为了更快的连接,就使用三次握手最合适。
每次握手失败对应的措施:
第一次握手失败:
如果第一次的SYN传输失败,两端都不会申请资源。如果一段时间后之前的SYN发送成功了,这时客户端只会接收他最后发送的SYN的SYN+ACK回应,其他的一概忽略,服务端也是如此,会将之前多申请的资源释放了。
第二次握手失败:
如果服务端发送的SYN+ACK传输失败,客户端由于没有收到这条响应,不会申请资源,虽然服务端申请了资源,但是迟迟收不到来自客户端的ACK,也会将该资源释放。
第三次握手失败:
如果第三次握手的ACK传输失败,导致服务端迟迟没有收到ACK,就会释放资源,这时候客户端认为自己已经连接好了,就会给服务端发送数据,服务端由于没有收到第三次握手,就会以RST包对客户端响应。但是实际上服务端会因为没有收到客户端的ACK多次发送SYN+ACK,次数是可以设置的,如果最后还是没有收到客户端的ACK,则释放资源。
这是我自己理解,有什么不合适的地方,欢迎各位大佬批评指正。
————————————————
版权声明:本文为CSDN博主「哆啦A熊」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Shuffle_Ts/article/details/93778635
TCP和UDP协议应用层举例
首先还是把协议特性说一下,明白了特性自然知道应用场合了,嘿嘿!两种协议都是传输层协议,为应用层提供信息载体。TCP协议是基于连接的可靠协议,有流量控制和差错控制,也正因为有可靠性的保证和控制手段,所以传输效率比UDP低;UDP协议是基于无连接的不可靠协议,没有控制手段,仅仅是将数据发送给对方,因此效率比TCP要高。
基于上述特性,不难得到结论,TCP协议适用于对效率要求相对低,但对准确性要求相对高的场景下,或者是有一种连接概念的场景下;而UDP协议适用于对效率要求相对高,对准确性要求相对低的场景。
好了,现在回到你的问题,举几个应用的例子。TCP一般用于文件传输(FTP HTTP 对数据准确性要求高,速度可以相对慢),发送或接收邮件(POP IMAP SMTP 对数据准确性要求高,非紧急应用),远程登录(TELNET SSH 对数据准确性有一定要求,有连接的概念)等等;UDP一般用于即时通信(QQ聊天 对数据准确性和丢包要求比较低,但速度必须快),在线视频(RTSP 速度一定要快,保证视频连续,但是偶尔花了一个图像帧,人们还是能接受的),网络语音电话(VoIP 语音数据包一般比较小,需要高速发送,偶尔断音或串音也没有问题)等等。
作为知识的扩展,可以再说一些其他应用。比如,TCP可以用于网络数据库,分布式高精度计算系统的数据传输;UDP可以用于服务系统内部之间的数据传输,因为数据可能比较多,内部系统局域网内的丢包错包率又很低,即便丢包,顶多是操作无效,这种情况下,UDP经常被使用。