Kotlin 并发编程艺术Kotlin 程序设计Java Web 核心技术

【Java 并发编程】Java 创建线程池的正确姿势: Exec

2020-06-03  本文已影响0人  光剑书架上的书

我们先看 Java 开发手册上说的:

我们可以看一下源码:


这里的 ThreadPoolExecutor 的构造函数如下:

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory and rejected execution handler.
     * It may be more convenient to use one of the {@link Executors} factory
     * methods instead of this general purpose constructor.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue} is null
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

参数说明:

RejectedExecutionHandler

其中,RejectedExecutionHandler(拒绝策略)指的是当阻塞队列满了之后,线程数量也达到最大值,无法再接受新任务的时候,可以根据饱和策略对新任务作出相应的处理。原生JDK线程池提供了4种饱和策略:

AbortPolicy:直接抛出异常。
CallerRunsPolicy:只用调用者所在线程来运行任务。
DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
DiscardPolicy:不处理,丢弃掉

除此之外,我们还可以自定义饱和策略满足业务场景的需求,比如:

public class LogPolicy implements RejectedExecutionHandler {
    @Override
    public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
        if (!executor.isShutdown()) {
            // 持久化不能处理的任务
            insertToDB(r);
        }
    }
}

以上是ThreadPoolExecutor构造函数的参数详细解析和作用。

类图结构:

Executors的创建线程池的方法,创建出来的线程池都实现了ExecutorService接口。常用方法有以下几个:

newFiexedThreadPool(int Threads):创建固定数目线程的线程池。

newCachedThreadPool():创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果没有可用的线程,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。

newSingleThreadExecutor()创建一个单线程化的Executor。

newScheduledThreadPool(int corePoolSize) 创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

类看起来功能还是比较强大的,又用到了工厂模式、又有比较强的扩展性,重要的是用起来还比较方便,如:

ExecutorService executor = Executors.newFixedThreadPool(nThreads) ;

即可创建一个固定大小的线程池。

执行原理

线程池执行器将会根据corePoolSize和maximumPoolSize自动地调整线程池大小。

当在execute(Runnable)方法中提交新任务并且少于corePoolSize线程正在运行时,即使其他工作线程处于空闲状态,也会创建一个新线程来处理该请求。 如果有多于corePoolSize但小于maximumPoolSize线程正在运行,则仅当队列已满时才会创建新线程。 通过设置corePoolSize和maximumPoolSize相同,您可以创建一个固定大小的线程池。 通过将maximumPoolSize设置为基本上无界的值,例如Integer.MAX_VALUE,您可以允许池容纳任意数量的并发任务。 通常,核心和最大池大小仅在构建时设置,但也可以使用setCorePoolSize和setMaximumPoolSize进行动态更改。

这段话详细了描述了线程池对任务的处理流程,这里用个图总结一下

使用 Executors 创建四种类型的线程池

newCachedThreadPool是Executors工厂类的一个静态函数,用来创建一个可以无限扩大的线程池。

而Executors工厂类一共可以创建四种类型的线程池,通过Executors.newXXX即可创建。下面就分别都介绍一下。

1. FixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads){
    return new ThreadPoolExecutor(nThreads,nThreads,0L,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

2. CachedThreadPool

public static ExecutorService newCachedThreadPool(){
    return new ThreadPoolExecutor(0,Integer.MAX_VALUE,60L,TimeUnit.MILLISECONDS,new SynchronousQueue<Runnable>());
}

3. SingleThreadExecutor

public static ExecutorService newSingleThreadExecutor(){
    return new ThreadPoolExecutor(1,1,0L,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

4. ScheduledThreadPool

它用来处理延时任务或定时任务。

  1. scheduledAtFixedRate
  2. scheduledWithFixedDelay
  1. time:任务开始的时间
  2. sequenceNumber:任务的序号
  3. period:任务执行的时间间隔

Executors存在什么问题

在阿里巴巴Java开发手册中提到,使用Executors创建线程池可能会导致OOM(OutOfMemory ,内存溢出),但是并没有说明为什么,那么接下来我们就来看一下到底为什么不允许使用Executors?

我们先来一个简单的例子,模拟一下使用Executors导致OOM的情况。

/**
 * @author Hollis
 */
public class ExecutorsDemo {
    private static ExecutorService executor = Executors.newFixedThreadPool(15);
    public static void main(String[] args) {
        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            executor.execute(new SubThread());
        }
    }
}

class SubThread implements Runnable {
    @Override
    public void run() {
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            //do nothing
        }
    }
}

通过指定JVM参数:-Xmx8m -Xms8m 运行以上代码,会抛出OOM:

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java的第16行,就是代码中的executor.execute(new SubThread());。

Executors为什么存在缺陷

通过上面的例子,我们知道了Executors创建的线程池存在OOM的风险,那么到底是什么原因导致的呢?我们需要深入Executors的源码来分析一下。

其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致OOM的其实是LinkedBlockingQueue.offer方法。

Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
    at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416)
    at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371)
    at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)

如果读者翻看代码的话,也可以发现,其实底层确实是通过LinkedBlockingQueue实现的:

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());

如果读者对Java中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。

Java中的BlockingQueue主要有两种实现,分别是ArrayBlockingQueue 和 LinkedBlockingQueue。

ArrayBlockingQueue是一个用数组实现的有界阻塞队列,必须设置容量。

LinkedBlockingQueue是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。

这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置LinkedBlockingQueue的容量的话,其默认容量将会是Integer.MAX_VALUE。

而newFixedThreadPool中创建LinkedBlockingQueue时,并未指定容量。此时,LinkedBlockingQueue就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。

上面提到的问题主要体现在newFixedThreadPool和newSingleThreadExecutor两个工厂方法上,并不是说newCachedThreadPool和newScheduledThreadPool这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致OOM。

创建线程池的正确姿势

避免使用Executors创建线程池,主要是避免使用其中的默认实现,那么我们可以自己直接调用ThreadPoolExecutor的构造函数来自己创建线程池。在创建的同时,给BlockQueue指定容量就可以了。

private static ExecutorService executor = new ThreadPoolExecutor(10, 10,
        60L, TimeUnit.SECONDS,
        new ArrayBlockingQueue(10));

这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。

除了自己定义ThreadPoolExecutor外。还有其他方法。这个时候第一时间就应该想到开源类库,如apache和guava等。

作者推荐使用guava提供的ThreadFactoryBuilder来创建线程池。

public class ExecutorsDemo {

    private static ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
        .setNameFormat("demo-pool-%d").build();

    private static ExecutorService pool = new ThreadPoolExecutor(5, 200,
        0L, TimeUnit.MILLISECONDS,
        new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) {

        for (int i = 0; i < Integer.MAX_VALUE; i++) {
            pool.execute(new SubThread());
        }
    }
}

通过上述方式创建线程时,不仅可以避免OOM的问题,还可以自定义线程名称,更加方便的出错的时候溯源。

参考资料

https://www.zhihu.com/question/23212914
https://www.zhihu.com/question/23212914/answer/245992718
https://www.jianshu.com/p/c41e942bcd64
https://www.jianshu.com/p/5c688d14188a


Kotlin开发者社区

专注分享 Java、 Kotlin、Spring/Spring Boot、MySQL、redis、neo4j、NoSQL、Android、JavaScript、React、Node、函数式编程、编程思想、"高可用,高性能,高实时"大型分布式系统架构设计主题。

High availability, high performance, high real-time large-scale distributed system architecture design

分布式框架:Zookeeper、分布式中间件框架等
分布式存储:GridFS、FastDFS、TFS、MemCache、redis等
分布式数据库:Cobar、tddl、Amoeba、Mycat
云计算、大数据、AI算法
虚拟化、云原生技术
分布式计算框架:MapReduce、Hadoop、Storm、Flink等
分布式通信机制:Dubbo、RPC调用、共享远程数据、消息队列等
消息队列MQ:Kafka、MetaQ,RocketMQ
怎样打造高可用系统:基于硬件、软件中间件、系统架构等一些典型方案的实现:HAProxy、基于Corosync+Pacemaker的高可用集群套件中间件系统
Mycat架构分布式演进
大数据Join背后的难题:数据、网络、内存和计算能力的矛盾和调和
Java分布式系统中的高性能难题:AIO,NIO,Netty还是自己开发框架?
高性能事件派发机制:线程池模型、Disruptor模型等等。。。

合抱之木,生于毫末;九层之台,起于垒土;千里之行,始于足下。不积跬步,无以至千里;不积小流,无以成江河。

上一篇下一篇

猜你喜欢

热点阅读