每天进步一点点

2020-07-11【树】

2020-07-11  本文已影响0人  桢桢claire
等待那一束光

今日鸡汤:

大脑的一切疲劳和压力来自于过去和未来:对已经发生的事情心有不甘,对将要发生的事情充满不安。

愿你内心平和,踏踏实实活在当下,不去悔恨过去,不去忧心未来。

今天一起来看树啦,多刷题,多刷题,有助于预防老年痴呆。

树的基础

1. 树的最大深度

最大深度一定是到叶子节点了才能判断是不是最深,为了记录层数,可以在遍历树的时候定义新的数据结构,另外存下来当前节点的层信息,这样访问叶子节点时,只要取出来判断一下就可以了。

    class NodeLevel{
        TreeNode node;
        int level;
         
        NodeLevel(TreeNode node,int level){
            this.node = node;
            this.level = level;
        }
    };
    /**
     *
     * @param root TreeNode类
     * @return int整型
     */
    public int maxDepth (TreeNode root) {
        // write code here
        if(root == null)    return 0;
        return maxTreeDepth(root);
    }
     
    public int maxTreeDepth(TreeNode root){
        int maxDepthVal = 0;
        Stack<NodeLevel> parentStack = new Stack<NodeLevel>();
        Stack<NodeLevel> childrenStack = new Stack<NodeLevel>();
         
        // Add root to childrend stack
        childrenStack.push(new NodeLevel(root, 1));
        while(childrenStack.size() > 0){
            // Get current top node.
            NodeLevel topNode = childrenStack.pop();
            int currentLevel = topNode.level;
            if(topNode.node.right == null && topNode.node.left == null){
                if(currentLevel > maxDepthVal)    maxDepthVal = currentLevel;
            } else{
                // Add child nodes.
                if(topNode.node.left != null){
                    childrenStack.add(new NodeLevel(topNode.node.left, currentLevel + 1));
                } 
                if(topNode.node.right != null){
                    childrenStack.add(new NodeLevel(topNode.node.right, currentLevel + 1));
                }
            }
            parentStack.push(topNode);
        }
        return maxDepthVal;
    }

树的遍历

先来看树的遍历。主要分为前序(先序)、中序和后序,遍历方法也很直接,递归和非递归,递归比较简单,主要看一下非递归方式,涉及到不同的数据结构。

1. 前序遍历

前序遍历是按照<根、左、右>的方式来遍历,特点是根先出,所以可以用一个栈+一个队列的数据结构。栈用来存当前节点,队列用来按顺序存放遍历结果。注意压栈是要先右再左,这样出栈时才是先左后右。

public ArrayList<Integer> preorderTraversal (TreeNode root) {
        Stack<TreeNode> stack = new Stack<TreeNode>();
        ArrayList<Integer> preOrderList = new ArrayList<Integer>();
        
        if(root == null)    return preOrderList;
        // Add root to stack
        stack.push(root);
        
        while(stack.size() != 0){
            // Get top node and put it into list.
            TreeNode topNode = stack.pop();
            preOrderList.add(topNode.val);
            
            // Push right node and left node to stack.
            if(topNode.right != null){
                stack.push(topNode.right);
            }
            if(topNode.left != null){
                stack.push(topNode.left);
            }
        }
        return preOrderList;
    }

2. 中序遍历

中序遍历是按照<左、中、右>的方式遍历,特点是根在中间,可以根据根节点位置直接区分左右子树的元素。因此,可以用一个栈,直接DFS,一直找左节点,为空时出栈,再加入右节点。

public ArrayList<Integer> inorderTraversal (TreeNode root) {
        ArrayList<Integer> traversalList = new ArrayList<Integer>();
         
        Stack<TreeNode> stack = new Stack<TreeNode>();
         
        TreeNode currentNode = root;
        // When all nodes are processed,  stack will be empty, stop the loop.
        while(currentNode != null || !stack.isEmpty()){
            if(currentNode != null){
                // Push left node to the stack
                stack.push(currentNode);
                currentNode = currentNode.left;
            } else{
                // Pop current node in the stack
                TreeNode popedNode = stack.pop();
                // Add value to list
                traversalList.add(popedNode.val);
                // Push right node
                currentNode = popedNode.right;
            }
        }
        return traversalList;
    }

3. 后序遍历

后序遍历是按照<左、右、中>的方式遍历,特点是根节点在最后,因此用两个栈,一个存放当前节点,一个存放当前节点的左右孩子。注意压栈时先左后右。

public ArrayList<Integer> postorderTraversal (TreeNode root) {
        // write code here
        ArrayList<Integer> postorderList = new ArrayList<Integer>();
        if(root == null)    return postorderList;
         
        Stack<TreeNode> parentStack = new Stack<TreeNode>();
        Stack<TreeNode> childrenStack = new Stack<TreeNode>();
         
        // Put root into children stack.
        childrenStack.push(root);
         
        while(childrenStack.size() != 0){
            // Pop top node and push it into parent stack.
            TreeNode topNode = childrenStack.pop();
            parentStack.push(topNode);
             
            // Push left and right node into children stack.
            if(topNode.left != null){
                childrenStack.push(topNode.left);
            }
            if(topNode.right != null){
                childrenStack.push(topNode.right);
            }
        }
         
        // Pop element in parent stack and save it into list.
        while(parentStack.size() != 0){
            postorderList.add(parentStack.pop().val);
        }
        return postorderList;
    }

4. 层次遍历(分层存储)

层次遍历是一层一层的从左往右遍历,遇到空节点直接跳过,所以可以用两个队列,一个队列放该层的节点,一个队列放上个队列所有节点的孩子,再倒手。

    public ArrayList<ArrayList<Integer>> levelOrder (TreeNode root) {
        // write code here
        ArrayList<ArrayList<Integer>> orderTraverseList = new ArrayList<ArrayList<Integer>>();
         
        if(root == null)    return orderTraverseList;
         
        ArrayList<TreeNode> parentList = new ArrayList<TreeNode>();
 
        parentList.add(root);
        
        while(parentList != null && parentList.size() != 0){
            // Add parent node list
            orderTraverseList.add(generateVal(parentList));
            // Generate children node list
            ArrayList<TreeNode> childrenList = generateChildren(parentList);
            //orderTraverseList.add(generateVal(childrenList));
            parentList = childrenList;
        } 
        return orderTraverseList;
    }
     
    public ArrayList<Integer> generateVal(ArrayList<TreeNode> nodeList){
        ArrayList<Integer> valList = new ArrayList<Integer>();
        for(TreeNode node: nodeList){
            valList.add(node.val);
        }
        return valList;
    }
     
    public ArrayList<TreeNode> generateChildren(ArrayList<TreeNode> parentList){
        ArrayList<TreeNode> childrenList = new ArrayList<TreeNode>();
        // Pop nodes in list and save them to current level list.
        for(TreeNode node: parentList){
            // Save all children of nodes in queue1 to queue2
            if(node.left != null){
                childrenList.add(node.left);
            }
            if(node.right != null){
                childrenList.add(node.right);
            }
        }
        return childrenList;
    }

各种奇葩的🌲

1. 判断是不是平衡二叉树

平衡二叉树就是每个节点左右子树高度差绝对值不超过1的二叉树,因此先递归计算左右子树的高度,再判断当前节点左右子树高度差是否满足条件,若满足,再对左右子树的结果做与运算即可。

public boolean isBalanced (TreeNode root) {
        // write code here
        if(root == null)    return true;
        int leftTreeHeight = getHeight(root.left);
        int rightTreeHeight = getHeight(root.right);
        if(Math.abs(leftTreeHeight - rightTreeHeight) <= 1){
            return isBalanced(root.left) && isBalanced(root.right);
        }
        return false;
    }
     
    public int getHeight(TreeNode root){
        if(root == null)    return 0;
        int left = getHeight(root.left) + 1;
        int right = getHeight(root.right) + 1;
        return (left > right) ? left: right;
    }
上一篇下一篇

猜你喜欢

热点阅读